 京公网安备 11010802034615号
			经营许可证编号:京B2-20210330
 京公网安备 11010802034615号
			经营许可证编号:京B2-20210330
		
	当“大数据”铺天盖地般向我们涌来,人们往往期冀能够对大数据能够有更进一步的了解,“数据挖掘”因此成为我们理解大数据概念绕不过去的“坎”。通过将大数据与数据挖掘进行对比分析,将有助于人们了解大数据的来龙去脉和未来真实走向。 
  1.基本概念 
  数据挖掘,顾名思义就是从大量的数据中挖掘出有用的信息,即从大量的、不完全的、有噪声的、随机的、模糊的数据中,提取隐含其中的、规律性的、人们事先未知的、但又是潜在的有用信息和知识的过程。数据挖掘是一个在海量数据中利用各种分析工具发现模型与数据间关系的过程,它可以帮助决策者寻找数据间潜在的某种关联,发现被隐藏的、被忽略的因素,因而被认为是在这个数据爆炸时代解决信息贫乏问题的一种有效方法。数据挖掘作为一门交叉学科,融合了数据库、人工智能、统计学、机器学习等多领域的理论与技术。数据库、人工智能与数理统计为数据挖掘的研究提供了三大技术支持。 
  大数据是通过高速捕捉、发现和分析,从大容量数据中获取价值的一种新的技术架构。著名研究机构IDC给大数据的定义,有四个"V"字开头的特征:Volume(体量大),Velocity(速度快),Variety(种类杂),Value(价值大)。Volume是指大数据巨大的数据量与数据完整性�Velocity可以理解为更快地满足实时性需求;Variety则意味着要在海量、种类繁多的数据间发现其内在关联;Value最重要,它是大数据的最终意义:挖掘数据存在的价值。 
  2.相互联系 
  大数据是数据挖掘的概念再升级。相比于兴起只有2~3年的大数据概念,已有20多年发展的数据挖掘可称得上大数据的开山鼻祖。因为大数据和数据挖掘的本质是相同的――对数据进行挖掘分析,以发现有价值的信息。而且大数据的兴起,正是在人工智能、机器学习和数据挖掘等技术基础之上发展起来的,而人工智能、机器学习又是在为数据挖掘服务。从表面上看,大数据与数据挖掘的显著区别在于“大”上。然而深入分析就会发现:一方面,数据挖掘的对象不仅可以用于少量的数据,而且同样适用于海量数据,只是由于挖掘方法和技术工具的不断升级换代,换了个新的名称而已;另一方面,大数据的本质不在于“大”,而是以崭新的思维和技术去分析海量数据,揭示其中隐藏的人类行为等模式,由此创造新产品和服务,或是预测未来趋势。所以大数据和数据挖掘的概念在一定时期还会并存,因应于使用的时机、场合或使用人的习惯,真正的关键点是如何体现出数据的价值。 
  大数据是数据挖掘产业化的表现。长久以来,数据挖掘的经典案例――“啤酒与尿布”被广为传颂,然而这一传奇故事显然跟不上时代大发展的步伐,取而代之的是谷歌成功预测流感的案例。数据的价值在于信息,而技术的价值在于利润,数据挖掘可以看作是专业技术领域的专业名词,到了商业领域就需要进一步的包装与升级。只有这样,一系列的开放式平台、技术解决方案才能迅速“火”起来。显而易见,这种商业的运作模式已经非常成熟和成功。目前,大数据已被视为创新和生产力提升的下一个前沿,正成为国家竞争力的要素之一,在世界范围内日益受到重视,多国政府加大了对大数据发展的扶持力度,甚至上升到国家战略的高度。某咨询公司研究显示,全球对大数据项目投资总额2012年已达45亿欧元(约60亿美元),2013、2014两年均会保持约40%的增长速度。 
  3.简要小结 
  当前,数据挖掘在专业领域的地位已经非常牢固,但大数据还受到民众和业界的诸多质疑,认为是一种商业噱头和忽悠。其实很多争论实质上并非在讨论同一问题。比如,有人举例说,《大数据时代》的作者维克托・迈尔―舍恩伯格认为 , “人们处理的数据从样本数据变成全部数据”的结论至少从目前的数据收集和分析能力来说是不可能实现的。我们应该看到,没有不变的真理,只有客观规律。任何技术都不是万能的,作为一种技术而言,它仅代表了一种发展方向,它因为能够解决某一现实问题而具备存在的价值;至于技术的商业化运用成不成功,则还受制于运用推广的方式等其它诸多因素。例如,对比上世纪末“互联网经济泡沫”破灭时的哀鸿遍野和前不久阿里巴巴在美国上市的一片赞歌,可以看出:互联网技术的发展势不可挡,互联网产业发展一波三折,只能说产业和技术紧密相联,但终究不是一回事。 
 
                  数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23