戴尔:大数据炼金术
戴尔大数据亮相2015中国国际大数据大会
未来的一年,企业级用户将加大在商业智能分析和大数据分析上的投入,如:如何提高批量分析效率、规划大数据分析架构,加速业务模式改变,降低数字经济环境下传统业务模式的风险。
善用大数据CIO体验跑车之速
传统IT环境,资源使用管理效率低,成为高成本中心,再加上IT对业务响应速度慢,无法满足互联网+时代下的业务需求,这就难以实现企业的弹性IT交付。最关键的是传统IT架构格局,还阻碍着新应用的部署。
CIO甚至被嘲讽为“Career is Over”,也就是职业生涯即将结束的含义。
戴尔大中华区企业技术战略架构师许良谋认为,通过IT创造价值,以云计算为核心的新IT环境,IT资源使用管理效率得以优化,实现用户自我选择管理IT服务交付,IT对业务的响应速度提高。
CIO可以释放大量IT资源,实现业务创新和IT创造价值。在新IT环境下,具有前瞻性的CIO以跑车的速度成为“战略架构师”,即“Career is Optimizing”,在公司的战略价值迅速提高。
新IT面向未来的解决方案
新IT的战略是什么?在复杂的IT业务环境下,如何实现高效、经济、安全的大数据应用?
从大数据分析到大数据实践,戴尔用未来就绪的IT战略为用户打造了一套数据管理平台和数据分析平台。
这就意味着,戴尔新IT解决方案让企业将爆炸式增长的数据变成业务核心竞争资源,实现通过IT创造价值,通过IT实现业务突破创新。
戴尔自身实践“炼术成金”
戴尔的大数据技术分析平台是经过戴尔公司自身的实践而成的“炼金术”。大数据的实践在戴尔整个生产、销售、市场等各个业务环节中都得到充份的验证。
首先,戴尔公司早在1994年,就成功通过电子商务模式进入中国市场,不仅开启了IT销售模式的一个新纪元,同时打造了一个卓越供应链标杆企业,实现“零”库存管理。其实大数据的实践早已经在戴尔自身的业务运营中展示了完美的成果。
第二,戴尔开启在中国1.0到4.0的时代,戴尔本身就是一互联网+制造的应用典范!无论从生产流程、业务流程还是到商业模式从容应对各种挑战。戴尔成都工厂实现了年总产值突破千亿元,资本支出下降了 50%,节省了高达96%的能源成本,完成戴尔“中国制造”的重要部署。这背后具备了一套强有力的IT系统的支撑。戴尔大数据解决方案更是在生产线和安全上给予重要的价值,高度自动化生产和数据安全的智能分析。
戴尔第一个内部的“大数据”使用方案,通过电商和生产工厂高度自动化流水线控制和数据安全分析系统,
用ETL来作为我们大数据的仓库的实施,最终实现了加速,通过“大数据”Hadoop技术框架,深化高效数据转移,经验证的技术架构,高度工程化解决方案。
第三,戴尔的精准营销智慧决策和分析系统,用SAP HANA来加速。戴尔自身对精准营销的需求,通过实践将它变成一个蓝图。
①首先对硬件、网络、主机进行优化。②结合客户需求,用软件分析达到精准营销效果,无论从数据备份、数据的灾备,或者做性能优化和分析,形成了一个完整的IT体系生态。
值得一提的是,戴尔大数据在SAP HANA技术蓝图基础上,用内存式RealTime的方式来演示,此项创新应用更是获得2015全球SAP HANA最有创意奖。
第四,大数据炼金术除了为戴尔自身的长久发展带来重要价值外,更帮助很多国内外的企业变数据为企业核心竞争力,通过开放的架构让企业从容应对变化,打造未来就绪的IT。
比如戴尔中国和SAP中国为某石油客户做了一个非常庞大的六个维度的新型拓扑,里面的数据多到可怕:181亿条记录,数据分析量超过60TB容量!其中进行了星形模型设计,包含2个事实表数据,明细数据模型、指标汇总模型,6个维度表数据,编号维表、ID维表、组织维度表、人员姓名、三级单位名称、分公司名称。
原有系统是2小时以上才能计算出结果,且易发生中断,采用戴尔Compellent存储全闪存技术在SAP HANA的新商业智能架构后,单个查询缩短到20秒以内,400并发查询运行缩短到10分钟以内!
如何开始大数据战略第一步?
戴尔中国4.0时代,大数据战略如何进一步落地?为了更有效务实的帮助中国用户踏上大数据实践之旅,不久前戴尔与英特尔正式成立了“戴尔中国大数据联盟创新实验室”,用户可以充分了解大数据的使用方法。戴尔通过大数据联盟实验室给客户提供了很好的平台,客户可以通过免费使用这个平台的各种资源并尝试四大应用。
结语通过自身的实践,戴尔搭建了切实可行的大数据技术架构和分析平台,最终让企业用户在大数据之旅中不迷茫,不断的从大数据里获益,在互联网+时代继续跑赢大势!
数据分析咨询请扫描二维码
在现代信息技术的广阔世界中,大数据架构师扮演着至关重要的角色。他们不仅引领着企业的数据战略,还通过技术创新推动业务的不断 ...
2024-11-04在当今数字化时代,数据分析师已成为企业关键角色,帮助决策者通过数据驱动的洞察实现业务目标。成为一名成功的数据分析师,需要 ...
2024-11-03在当今数字化的世界中,数据分析已经成为推动商业决策的关键因素。随着公司和组织越来越依赖数据来驱动业务战略,对数据分析专 ...
2024-11-03《Python数据分析极简入门》 第2节 2 Pandas数据类型 Pandas 有两种自己独有的基本数据结构。需要注意的是,它固然有着两种数据 ...
2024-11-01《Python数据分析极简入门》 第2节 1 Pandas简介 说好开始学Python,怎么到了Pandas? 前面说过,既然定义为极简入门,我们只抓 ...
2024-10-31在当今数据驱动的世界中,数据科学与工程专业的重要性愈发凸显。无论是推动技术进步,还是在商业决策中提供精准分析,这一专业都 ...
2024-10-30在当今信息爆炸的时代,数据已成为企业决策和战略制定的核心资源。爬虫工程师因此成为数据获取和挖掘的关键角色。本文将详细介绍 ...
2024-10-30在当今数据驱动的世界中,数据分析是揭示商业洞察和推动决策的核心力量。选择合适的数据分析工具对于数据专业人士而言至关重要。 ...
2024-10-30能源企业在全球经济和环境保护双重压力下,正面临前所未有的挑战与机遇。数字化转型作为应对这些挑战的关键手段,正在深刻变革传 ...
2024-10-30近年来,随着数据科学的逐步发展,Python语言的使用率也越来越高,不仅可以做数据处理,网页开发,更是数据科学、机器学习、深度 ...
2024-10-30大数据分析师证书 针对不同知识,掌握程度的要求分为【领会】、【熟知】、【应用】三个级别,考生应按照不同知识要求进行学习。 ...
2024-10-30《Python数据分析极简入门》 附:Anaconda安装教程 注:分Windows系统下安装和MacOS系统安装 1. Windows系统下安装 第一步清华大 ...
2024-10-29拥抱数据分析的世界 - 成为一名数据分析工程师是一个充满挑战和机遇的职业选择。要成功地进入这个领域,你需要掌握一系列关键技 ...
2024-10-28降本增效:管理战略的关键 企业管理中的降本增效不仅是一项重要的战略举措,更是激发竞争力、提高盈利能力的关键。这一理念在当 ...
2024-10-28企业数字化是指利用数字技术和信息化手段,对企业的各个方面进行改造和优化,以提升生产效率、服务质量和市场竞争力的过程。实现 ...
2024-10-28数据科学专业毕业后,毕业生可以选择从事多种不同的岗位和领域。数据科学是一个快速发展且广泛应用的领域,毕业生在企业、学术界 ...
2024-10-28学习数据科学与大数据技术是当今职业发展中至关重要的一环。从基础到高级,以下是一些建议的课程路径: 基础课程: Python编程 ...
2024-10-28在信息技术和数据科学领域,数据架构师扮演着至关重要的角色。他们负责设计和管理企业中复杂的数据基础设施,以支持数据驱动的决 ...
2024-10-28进入21世纪以来,随着信息技术的迅猛发展,大数据已经成为全球最具影响力的技术之一,并成为企业数字化转型的核心驱动力。大数据 ...
2024-10-28随着科技的迅猛发展,数字化转型已成为现代企业保持竞争力和推动增长的关键战略之一。数字化不仅仅是技术的应用,它代表着一种全 ...
2024-10-28