引力波数据是用 Python 分析的,真牛!
Python 作为数据分析师人员应该掌握的一门技术,python技术的发展及使用在社会上得到更大的应用。
美国科学家11日宣布,他们去年9月首次探测到引力波。这一发现印证了物理学大师爱因斯坦100年前的预言。宣布这一发现的,是激光干涉引力波天文台(LIGO)的负责人。
这个机构诞生于上世纪90年代,进行引力波观测已经有近30年。那么观测到的引力波数据的量应该很大,科学家如何对这些数据进行分析?有没有用到Python编程语言?
答案是肯定的。笔者在Github上发现了一个专门用于分析引力波数据的Python包:GWPY。据维护者介绍,GWPY的代码来自LIGO和另一个名叫Virgo的机构,维护者将这两个机构科学家的Python代码整理,最终的产品就是GWPY这个用户友好的Python包。
在具体介绍GWPY之前,先给和笔者一样的小白简单科普一下引力波和LIGO的相关知识。
什么是引力波?
This 3-D visualization shows the gravitational waves produced by two orbiting black holes. (Credit: NASA)
上图是两个黑洞所产生的引力波的3-D模拟图(NASA)。
首 先,什么是引力波?在物理学上,引力波是爱因斯坦广义相对论所预言的一种以光速传播的时空波动,如同石头丢进水里产生的波纹一样,引力波被视为宇宙中的 “时空涟漪”。通常引力波的产生非常困难,地球围绕太阳以每秒30千米的速度前进,发出的引力波功率仅为200瓦,还不如家用电饭煲功率大。宇宙中大质量 天体的加速、碰撞和合并等事件才可以形成强大的引力波,但能产生这种较强引力波的波源距离地球都十分遥远,传播到地球时变得非常微弱。
下面分享两个优秀的视频,很好地解释了引力波及背后的原理。第一个来自LIGO,第二个则是比较通俗的漫画式讲解。
LIGO科学家的解释:
漫画式通俗解释:
LIGO是什么?
激光干涉引力波观测站Laser Interferometer Gravitational-Wave ObservatoryLIGO是加州理工学院(Caltech)和麻省理工学院(MIT)的合作实验室,现在也有其他的大学参与。实验资金来源于美国国家科学基金会。LIGO是用来寻找宇宙中的引力波,从而可以验证黑洞的存在和检验广义相对论。
LIGO 主要有两个观测点,位于路易斯安那Livingston Parish的LIGO Livingston观测点,和华盛顿 Hanford的LIGO Hanford观测点。除此之外,在加州Passadena 的Caltech校园中还有LIGO 40m Prototype 。
LIGO是如何探测引力波的?
GWPY:LIGO用它分析引力波数据?
接下来是本文的重头戏。我们一起来学习如何GWPY分析引力波数据。下面的介绍及示例均来自GWPY的官方文档。
安装
很简单,pip install gwpy就可以完成安装。
不过安装的过程可能会比较长,因为gwpy使用的依赖包比较多,包括numpy、 scipy、 cycler、matplotlib、astropy等。
面向对象编程
GWPY是一个面向对象编程的Python包,也就是说,数据对象是这个包的核心关注点。每一个数据对象都体现为一个类实例,包含了其属性和包含的数据。
如果想创建一个新的类实例,建议使用标准的构建器constructor。举个例子,我们可以使用一个数据数组,生成一个TimeSeries对象:
>>> from gwpy.timeseries import TimeSeries>>> mydata = TimeSeries([1,2,3,4,5,6,7,8,9,10], sample_rate=1, epoch=0)
或者从在线数据服务器上下载:
>>> from gwpy.timeseries import TimeSeries>>> mydata = TimeSeries.fetch('H1:LDAS-STRAIN', 964656015, 964656615)
核心数据对象
据介绍,GWPY提供了4种核心数据对象,分别代表引力波探测器所产生的四种标准数据:
TimeSeries(时间序列数据)
Spectrum(光谱数据)
Spectrogram(光谱图)
DataQualityFlag
引力波数据可视化
我们知道,将引力波探测器收集的数据可视化,对于理解引力波的特性、研究引力波信号来说非常有帮助。gwpy.plotter模块中提供了一些plot类,可以直观地展示相应的数据类型。
GWPY的核心数据对象里,大部分都内置有一个plot()方法,可以让研究人员快速对某个数据集进行可视化展示。举个例子:
>>> from gwpy.timeseries import TimeSeries>>> data = TimeSeries.fetch('H1:LDAS-STRAIN', 968654552, 968654562)>>> plot = data.plot()>>> plot.show()
gwpy data plot
GWPY:利用公开的LIGO数据进行绘图
我们接下来利用LIGO公开的一些引力波时间序列数据进行绘图。我们可以直接在线加载这些数据。首先导入我们需要的模块:
>>> from urllib2 import urlopen>>> from numpy import asarray>>> from gwpy.timeseries import TimeSeries
然后,下载数据,保存为文本字符串:
>>> data = urlopen('http://www.ligo.org/science/GW100916/L-strain_hp30-968654552-10.txt').read()
现在,我们可以对文本进行解析,补充必要的元数据之后,就可以生成一个TimeSeries:
>>> ts = TimeSeries(asarray(data.splitlines(), dtype=float),>>> epoch=968654552, sample_rate=16384, unit='strain')
最后,我们就可以绘图了:
>>> plot = ts.plot()>>> plot.set_title('LIGO Livingston Observatory data for GW100916')>>> plot.set_ylabel('Gravitational-wave strain amplitude')>>> plot.show()
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA持证人简介 刘伟,美国 NAU 大学计算机信息技术硕士, CDA数据分析师三级持证人,现任职于江苏宝应农商银行数据治理岗。 学 ...
2025-04-21持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师 今天我将为大家带来一个关于用户私域用户质量数据分析 ...
2025-04-18一、CDA持证人介绍 在数字化浪潮席卷商业领域的当下,数据分析已成为企业发展的关键驱动力。为助力大家深入了解数据分析在电商行 ...
2025-04-17CDA持证人简介:居瑜 ,CDA一级持证人,国企财务经理,13年财务管理运营经验,在数据分析实践方面积累了丰富的行业经验。 一、 ...
2025-04-16持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-02最近我发现一个绝招,用DeepSeek AI处理Excel数据简直太爽了!处理速度嘎嘎快! 平常一整天的表格处理工作,现在只要三步就能搞 ...
2025-04-01你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28