大数据之基于模型的复杂数据多维聚类析(二)
在隐树模型中,一个隐变量对应一种数据聚类的方法。隐树模型允许模型中有多个隐变量,所以自然地可以多维同时聚类。在例子模型中,可以按照分析能力或者语言能力对学生聚类,也可以按照智力对学生聚类。在隐树模型中,聚类分析可以通过计算给定学生成绩的后验概率进行判断。所以,利用隐树模型进行多维聚类分析的技术重点就在如何通过观测数据学习一个最优的模型。抽象地说,就是找到能够最好地解释数据的一个生成隐树模型(Generative Latent tree model)。
隐树模型的学习
隐树模型的学习是一个对模型逐步优化的过程,优化的目标函数是一个称为贝叶斯信息准则(Bayes information criterion, 简称BIC) 的函数:
BIC(m|D) = max θ log P(D|m, θ) – d(m)logN/2
BIC准则要求模型与数据尽量紧密地拟合,但其复杂不能过高。所以式中第一项表示拟合程度,而第二项是对于模型复杂度的一个惩罚项。我们的优化过程是一个基于搜索的爬山算法(Hill-Climbing)。以只包含一个隐变量的简单的隐树模型作为搜索的起始模型,在搜索的过程中,逐步引入新的隐变量、增加隐变量的取值个数、或者调整变量之间的连接。这是一个逐步修改模型的过程,在这个过程中,模型与数据的拟合程度不断改进,从而BIC分逐步增加。当模型就变得太复杂时,BIC会不升反降,于是搜索过程停止。
隐树模型的学习是一个非常耗时的过程,主要原因在于对于BIC分数的计算。BIC函数的第一项叫做最大似然函数,在模型包含缺失值或者隐变量时,计算最大似然函数需要调用EM(Expectation-Maximization)算法。尽管我们已经对于限制了模型结构为简单的树状结构,但是在这样的模型上进行EM的计算依然是非常困难。围绕隐树模型的很多工作都是在研究如何对模型学习进行加速的,这儿就不赘述了。
基于隐树模型的多维聚类分析实例
我们以一个真实的数据分析实例来展现多维聚类分析。数据来自某地区的关于贪污的社会调查问卷。通过一些数据预处理,我们的数据(如图所示)包含了1200份的问卷,以及31个问题。比如说C_City表示被访问者对于该地区的贪污普遍性的看法,可以有4个选项,分别是非常普遍,普遍,不普遍,以及非常不普遍。C_Gov和C_Bus分别表示受访者对于该地区政府部门或商业部门的贪污普遍性的看法,同样也有四个选项。Tolerance_C_Gov和Tolerance_C_Bus则分别表示受访者对于该地区的政府部门以及商业部门的贪污的容忍程度,可以选择完全不能容忍,不能容忍,能容忍,完全能容忍。数据表里面的-1表示受访者对该问题的回答缺失。
利用隐树的学习算法,我们从这个数据得到了一个如图所示的模型。叶节点对应问卷问题,即显变量。中间结点,Y0-Y8是从数据中发现的隐变量,括号里面的数字表示这个变量所取的状态个数。我们发现这些隐变量都有一定的意义,比如,Y2和问卷中的Sex,Age,Income,Education这些问题紧密连接,说明Y2应该是表示受访人的人口统计信息。Y3和问卷中的Tolerance_C_Gov和Tolerance_C_Bus紧密联系,说明Y3是反映受访者总体对于贪污的看法。
模型中的每个隐变量表示数据聚类的一种方式。比如,变量Y2有4个值,说明Y2提示数据可以分成四个类。这种聚类主要基于Sex,Age,Income,Education这些人口统计信息相关变量的,所以可以说当我们关注人群的人口统计信息这个侧面时,我们可以根据Y2把人群分成四类。具体地研究这四类的类条件概率(Class-Conditional ProbabilityDistribution)特性,我们进一步发现它们分别代表:低收入的年轻人群,低收入的女性人群,受过高等教育的高收入人群,以及只接受初等教育的一般收入人群。同时,我们看到Y3有3个取值,这说明从人群对于贪污总体看法这个侧面出发,可以把人群分成三类,分别是对于贪污完全不能容忍的人群,对于贪污比较不能容忍的人群,对于贪污可以容忍的人群。同样地,我们的聚类也可以基于其他隐变量所代表的侧面。这样从模型中我们得到了9种聚类的方法,达到了多维同时聚类的效果。
数据分析咨询请扫描二维码
数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14在当今高速发展的技术环境下,企业正在面临前所未有的机遇和挑战。数字化转型已成为企业保持竞争力和应对市场变化的必由之路。要 ...
2024-11-13爬虫技术在数据分析中扮演着至关重要的角色,其主要作用体现在以下几个方面: 数据收集:爬虫能够自动化地从互联网上抓取大量数 ...
2024-11-13在数据分析中,数据可视化是一种将复杂数据转化为图表、图形或其他可视形式的技术,旨在通过直观的方式帮助人们理解数据的含义与 ...
2024-11-13在现代银行业中,数字化用户行为分析已成为优化产品和服务、提升客户体验和提高业务效率的重要工具。通过全面的数据采集、深入的 ...
2024-11-13在这个数据飞速增长的时代,企业若想在竞争中占据优势,必须充分利用数据分析优化其营销策略。数据不仅有助于理解市场趋势,还可 ...
2024-11-13数据分析行业的就业趋势显示出多个积极的发展方向。随着大数据和人工智能技术的不断进步,数据分析在各行各业中的应用变得越来越 ...
2024-11-13市场数据分析是一门涉及多种技能和工具的学科,对企业在竞争激烈的市场中保持竞争力至关重要。通过数据分析,企业不仅可以了解当 ...
2024-11-13数据分析与数据挖掘是数据科学领域中两个关键的组成部分,它们各有独特的目标、方法和应用场景。尽管它们经常在实际应用中结合使 ...
2024-11-13在如今这个数据驱动的时代,数据分析能力已经成为许多行业的重要技能。无论是为工作需要,还是为了职业转型,掌握数据分析都能够 ...
2024-11-13在如今这个数据驱动的时代,数据分析能力已经成为许多行业的重要技能。无论是为工作需要,还是为了职业转型,掌握数据分析都能够 ...
2024-11-13作为一名业务分析师,你肩负着将业务需求转化为技术解决方案的重任。面试这一角色时,涉及的问题多种多样,涵盖技术技能、分析能 ...
2024-11-13自学数据分析可能看似一项艰巨的任务,尤其在开始时。但是,通过一些策略和方法,你可以系统地学习和掌握数据分析的相关知识和技 ...
2024-11-10Excel是数据分析领域中的一款强大工具,它凭借其灵活的功能和易用的界面,成为了许多数据分析师和从业者的首选。无论是简单的数 ...
2024-11-10在快速发展的商业环境中,数据分析能力已经成为许多行业的核心竞争力。无论是初学者还是经验丰富的专家,搭建一个有效的数据分析 ...
2024-11-10在如今的数据驱动世界,数据分析师在各行各业中扮演着至关重要的角色。随着企业越来越依赖数据决策,数据分析职位的需求不断增加 ...
2024-11-10在信息爆炸的时代,做出正确的数据分析方法选择变得尤为重要。这不仅影响到数据分析的准确性,更关系到最终的决策效果。本文将详 ...
2024-11-10在当今竞争激烈的市场环境中,准确地把握市场动态和消费者需求是企业成功的关键。数据分析以其科学严谨的方法论,成为市场研究的 ...
2024-11-09