大数据之基于模型的复杂数据多维聚类析(二)
在隐树模型中,一个隐变量对应一种数据聚类的方法。隐树模型允许模型中有多个隐变量,所以自然地可以多维同时聚类。在例子模型中,可以按照分析能力或者语言能力对学生聚类,也可以按照智力对学生聚类。在隐树模型中,聚类分析可以通过计算给定学生成绩的后验概率进行判断。所以,利用隐树模型进行多维聚类分析的技术重点就在如何通过观测数据学习一个最优的模型。抽象地说,就是找到能够最好地解释数据的一个生成隐树模型(Generative Latent tree model)。
隐树模型的学习
隐树模型的学习是一个对模型逐步优化的过程,优化的目标函数是一个称为贝叶斯信息准则(Bayes information criterion, 简称BIC) 的函数:
BIC(m|D) = max θ log P(D|m, θ) – d(m)logN/2
BIC准则要求模型与数据尽量紧密地拟合,但其复杂不能过高。所以式中第一项表示拟合程度,而第二项是对于模型复杂度的一个惩罚项。我们的优化过程是一个基于搜索的爬山算法(Hill-Climbing)。以只包含一个隐变量的简单的隐树模型作为搜索的起始模型,在搜索的过程中,逐步引入新的隐变量、增加隐变量的取值个数、或者调整变量之间的连接。这是一个逐步修改模型的过程,在这个过程中,模型与数据的拟合程度不断改进,从而BIC分逐步增加。当模型就变得太复杂时,BIC会不升反降,于是搜索过程停止。
隐树模型的学习是一个非常耗时的过程,主要原因在于对于BIC分数的计算。BIC函数的第一项叫做最大似然函数,在模型包含缺失值或者隐变量时,计算最大似然函数需要调用EM(Expectation-Maximization)算法。尽管我们已经对于限制了模型结构为简单的树状结构,但是在这样的模型上进行EM的计算依然是非常困难。围绕隐树模型的很多工作都是在研究如何对模型学习进行加速的,这儿就不赘述了。
基于隐树模型的多维聚类分析实例
我们以一个真实的数据分析实例来展现多维聚类分析。数据来自某地区的关于贪污的社会调查问卷。通过一些数据预处理,我们的数据(如图所示)包含了1200份的问卷,以及31个问题。比如说C_City表示被访问者对于该地区的贪污普遍性的看法,可以有4个选项,分别是非常普遍,普遍,不普遍,以及非常不普遍。C_Gov和C_Bus分别表示受访者对于该地区政府部门或商业部门的贪污普遍性的看法,同样也有四个选项。Tolerance_C_Gov和Tolerance_C_Bus则分别表示受访者对于该地区的政府部门以及商业部门的贪污的容忍程度,可以选择完全不能容忍,不能容忍,能容忍,完全能容忍。数据表里面的-1表示受访者对该问题的回答缺失。
利用隐树的学习算法,我们从这个数据得到了一个如图所示的模型。叶节点对应问卷问题,即显变量。中间结点,Y0-Y8是从数据中发现的隐变量,括号里面的数字表示这个变量所取的状态个数。我们发现这些隐变量都有一定的意义,比如,Y2和问卷中的Sex,Age,Income,Education这些问题紧密连接,说明Y2应该是表示受访人的人口统计信息。Y3和问卷中的Tolerance_C_Gov和Tolerance_C_Bus紧密联系,说明Y3是反映受访者总体对于贪污的看法。
模型中的每个隐变量表示数据聚类的一种方式。比如,变量Y2有4个值,说明Y2提示数据可以分成四个类。这种聚类主要基于Sex,Age,Income,Education这些人口统计信息相关变量的,所以可以说当我们关注人群的人口统计信息这个侧面时,我们可以根据Y2把人群分成四类。具体地研究这四类的类条件概率(Class-Conditional ProbabilityDistribution)特性,我们进一步发现它们分别代表:低收入的年轻人群,低收入的女性人群,受过高等教育的高收入人群,以及只接受初等教育的一般收入人群。同时,我们看到Y3有3个取值,这说明从人群对于贪污总体看法这个侧面出发,可以把人群分成三类,分别是对于贪污完全不能容忍的人群,对于贪污比较不能容忍的人群,对于贪污可以容忍的人群。同样地,我们的聚类也可以基于其他隐变量所代表的侧面。这样从模型中我们得到了9种聚类的方法,达到了多维同时聚类的效果。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31本人基本情况: 学校及专业:厦门大学经济学院应用统计 实习经历:快手数据分析、字节数据分析、百度数据分析 Offer情况:北京 ...
2025-01-3001专家简介 徐杨老师,CDA数据科学研究院教研副总监,主要负责CDA认证项目以及机器学习/人工智能类课程的研发与授课,负责过中 ...
2025-01-29持证人简介 郭畅,CDA数据分析师二级持证人,安徽大学毕业,目前就职于徽商银行总行大数据部,两年工作经验,主要参与两项跨部 ...
2025-01-282025年刚开启,知乎上就出现了一个热帖: 2024年突然出现的经济下行,使各行各业都感觉到压力山大。有人说,大环境越来越不好了 ...
2025-01-27在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-01-26数据指标体系 “数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而 ...
2025-01-26在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-25俗话说的好“文不如表,表不如图”,图的信息传达效率很高,是数据汇报、数据展示的重要手段。好的数据展示不仅需要有图,还要选 ...
2025-01-24数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪70 ...
2025-01-24又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-23“用户旅程分析”概念 用户旅程图又叫做用户体验地图,它是用于描述用户在与产品或服务互动的过程中所经历的各个阶段、触点和情 ...
2025-01-22在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-22在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07