大数据之基于模型的复杂数据多维聚类析(三)
除了聚类,对于这个数据的分析还告诉我们一些隐藏很深的关系。比如在模型中变量Y2和Y3有连线,这表明一个人的背景信息和他对于贪污的容忍程度应该有一定的关联关系。具体地说,在Y2所表示的4类人中,你觉得哪一类是最能容忍贪污,而哪一类是最不能容忍贪污的呢?在模型中,通过对这两个变量的条件概率的分析,我们得到了一个答案,有兴趣的同学可以去论文中验证一下自己的猜测。
相关学术工作
隐树模型在密度估计,近似推理及隐结构发现等方面都有具体的应用。在多维聚类分析的应用上,我们分析过市场学数据(COILChallenge 2000),某地区的社会调查数据(ICAC),NBA篮球运动员比赛统计数据。最近,随着算法的提速,隐树模型开始被尝试用于文本分析,比如对于网页数据,博客数据等的话题分析。隐树模型最开始的提出是为了对中医的证候分析提供统计解释,有兴趣的同学可以参考隐结构模型与中医证研究。
最近两年,多维聚类分析引起了很多机器学习研究人员的兴趣。从2010年开始的MultiClust Workshop已经举办了两届,其中第一届是和KDD2010一起举办,第二届是和ECML/PKDD2011一起举办。而第三届也会与SDM2012一起举办。具体参考文献这儿也不罗列了。
多维聚类分析和基于多视图的学习不应该混淆。多视图学习假设数据的多个视图已知,要求视图之间存在充分性(Sufficiency)和冗余性(Redundancy),通过协同训练等技术,主要提高半监督学习,主动学习的性能。多视图学习中针对聚类这样的无监督任务的研究很少,而且它的目标也是如何提高单一的聚类划分的质量,而不是找到多种划分方法。多视图学习也极少涉及如何发现多个视图,而不是假设他们已知。这方面南京大学周志华教授在今年的中国机器学习及其应用研讨会上提到一些初步研究。实际中,可以考虑先用多维聚类分析找到数据的多个侧面(视图),然后再应用多视图学习的方法。
总结
对于一个复杂数据,比如文本,视频,图像,或者生物实验数据,人们可以从不同的角度去诠释这样的数据。数据分析家们已经有了这样的共识,那就是以前的单维聚类方法不再适合大数据的多样性特征。多维聚类分析通过对单维聚类问题的扩展,为复杂数据提供了一种新的探索性分析的方式。我们通过找到数据的不同侧面,按照这些侧面进行分别聚类,然后把各种聚类结果全部以一种简单的方式呈现给领域专家,由专家决定他认为最合适的聚类方法。这样的工作流程清晰定义数据科学家和领域专家的职能,通过两者的合作,提高数据的聚类结果,并且提升数据的可解释性。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21