数据分析师主宰者
数据分析师指的是不同行业中,专门从事行业数据搜集、整理、分析,并依据数据做出行业研究、评估和预测的专业人员。
不管你喜不喜欢,你在网络上所做的事情都会留下越来越深的足迹。那些公司拥有关于你和其他数百万潜在顾客的海量数据。他们现在所需的就是一只分析师队伍,让这些数据变便得有意义。
当然,谷歌已经是这方面活生生的例子了。
其领导人已经建立了一个利润达236亿美元的企业——完全是建立在追踪、理解和管理数据的基础上,更精确的说是理解人们如何进行搜索,然后在搜索结果旁附上相应的广告。然而数据的威力还仅仅限于因特网企业。想想看,因为你在生活中留下了越来越深的数字足迹,现在的每一行业都能获得不可思议让人头疼的大量的客户与潜在客户数据。
利用Web,商家能够而且肯定会密切注意你的每次点击,或者至少其中的大部分。而且,越来越多的人正在利用手机订机票、买书或者缴停车费等各种事情,数据挖掘的可能性变得更加丰富了。
数据分析师也是这样。
大大小小的公司预计会雇佣大量的数据分析师。根据劳工统计局所述,这一职业总体上在2018年之前将以45%的速度递增,成为增长速度最快的职业。劳工统计局将这一职业分为几类比如软件与应用程序工程师和计算机系统分析师等,这些都有巨大的机会。数据处理革命正在席卷商业的每一个角落。毕竟,更多的数据能够帮助更好的管理公司运行和供应链。“目前的挑战是利用这些数据更好的理解商业的方方面面”,Varian说。
机会来自大大小小的公司,甚至那些目前还不存在的公司。
让我们来来看看Jeff Tseng,他在2007年中跟合伙人Albert Lai在旧金山创立了Kontagent公司。Kontagent公司完全依赖Facebook和其私人投资者的资助而存活。Tseng和其队伍创造了一系列分析人们在Facebook上行为方式的工具,尤其是注意如何与第三方应用,比如游戏,互动。这些是非常有用的信息,Kontagent已经有了100位顾客订购他们的分析工具,用于分析,例如,那些游戏邀请能够带来注册、为什么会这样等信息。
Tseng和他的队伍进行的是一项很有难度的数据挖掘任务。
考虑下这些数据:Facebook有4亿活跃用户,平均每天在线55分钟 。这对Kontagent意味着什么?“我们每个月收集几十亿条用户数据,“Tseng说,他今年31岁,为了创业从UCLA的电子工程系博士学位退学。”在今后几年,更会增加到数百亿条。”
收集到数据是一件事,利用好它是另外一件事。
这是数字时代每一行业的所面临的挑战。所以除了超人的数学技能,和Tseng一样的人们还需要理解经济和某一特定市场的的精髓。换句话说,这和单纯的数学据计算差的很远。
Kongtangent现在只有九名雇员,但是不要小觑这类小公司未来的工作机会。并不是Kontangent所做的事吸引了Varian和其他经济学家的注意力,而是它将何去何从。
对Varian来说,Kontangent代表一个巨大且重要的劳动力方面的趋势:他所说的“micro-nationalcompanies”的崛起。这是指,由技术的进步,小公司可以便宜的使用不久以前还专属于跨国巨头的计算能力。比如,Kontangent将其所有数据存储在“云”上,从而省去了昂贵的数据中心。它租赁“云”上的数据间并通过web访问,很多新开张的公司都这样做。
向云的迁移还正在从另一方面帮助就业市场。
以EMC为例,这是一家数据存储和数据安全的公司。它正在推动无线和云计算方面的数据保护工作。结果,该公司计划今年大量招聘,将其研发费用提高20%。它在第一季度已经雇佣了800名新员工,并计划在年底前再增加2000人。
Varian认为向云的迁移的重要性不仅仅在于它创造了新的就业机会,还在于他正在改变我们的工作方式。比如,它使得频繁的更改一项大工程更容易还让全球合作成为可能。他说,这最终会成就一个更有效率的社会。按此推断,这会让我们有更多的空闲时间去购物、旅游、做自己的事,然后制造更多的数据。
总结:越来越多的企业将选择数据分析师的专业人士为他们做出科学、合理的分析,以便正确决策项目.
数据分析咨询请扫描二维码
数据收集与整理 - 从各种来源收集数据,清洗和整理以确保数据质量和可用性。 数据分析与建模 - 运用统计学方法和机器学习模型对 ...
2024-11-26技术技能 - 编程能力: 数据分析师需要掌握至少一门编程语言,如Python、R或SQL。这些语言对于数据处理、建模和分析至关重要。例 ...
2024-11-26数据分析领域涵盖多样性岗位,根据工作职责和技能需求划分。这些角色在企业中扮演关键角色,帮助组织制定战略、优化流程并实现商 ...
2024-11-26数据分析是一种通过收集、处理、解释和展示数据,以获得见解和决策支持的过程。这个领域涉及使用统计学、计算机科学和商业智能等 ...
2024-11-26数据分析领域正日益成为当今商业世界中不可或缺的一环。随着数据量的爆炸式增长,企业越来越需要能够从这些海量信息中提炼出宝贵 ...
2024-11-26数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。在追求这一职业道路上,合适的教育和培训至关重 ...
2024-11-26数据分析师作为当今信息时代中关键的职业之一,扮演着解释、预测和推动决策的重要角色。他们需要多方位技能来处理各种复杂的数据 ...
2024-11-26数据分析师在今天的商业环境中扮演着至关重要的角色。他们需要应对各种复杂的数据分析任务和业务需求,这要求他们具备广泛的技能 ...
2024-11-26在当今快速变化的技术和市场环境中,数字化转型是企业利用数字技术全面重新设计和改造业务的重要过程。这一转型旨在通过整合云计 ...
2024-11-26数字化转型: 是企业在现代技术和市场环境不断变化的背景下,利用数字技术对其业务进行全面的重新设计和改造的过程。其核心目标是 ...
2024-11-26理论基础与高级学习 数学专业理论基础: 学生首先需要掌握数学的基础理论,包括数学分析、高等代数、几何学、常微分方程、实变函 ...
2024-11-26数字化转型:现代企业蜕变的引擎 数字化转型已然成为当今企业持续发展的关键支柱。这一过程并非简单的技术升级,更是涉及企业文 ...
2024-11-26# 数据科学与大数据技术专业学什么?就业前景与行业需求 **数字化转型:引领企业进步的关键** 数字化转型是现代企业发展的必经 ...
2024-11-26理论部分 - 基础数学理论: - 学生首先需要掌握数学的基础理论,包括数学分析、高等代数、几何学、常微分方程等。 - 这些课程 ...
2024-11-26在选择数据科学和大数据技术专业时,了解不同领域的职责和技能需求至关重要。数据治理工程师是这一领域中不可或缺的角色之一,承 ...
2024-11-26基础课程 统计学基础 - 统计学是数据分析的基石,包括概率、假设检验、回归分析等基本知识,有助于理解数据背后的意义。 - ...
2024-11-26数据分析是一门综合性学科,涉及多个领域的知识和技能。要全面掌握数据分析,需要学习以下内容: 基础课程 统计学基础:统计学 ...
2024-11-26数据治理工程师在当今信息时代扮演着至关重要的角色,负责确保组织内数据的质量、安全性和可用性。他们需要具备一系列技能和才能 ...
2024-11-26在当今数字化时代,数据被誉为新的石油,是企业最有价值的资产之一。因此,建立有效的数据战略规划对于企业的成功至关重要。数据 ...
2024-11-26<section id=
2024-11-26