预测2016年:大数据行业的变与不变
“这两年大数据的风头明显盖过了云计算,这不是好事。”近日,华为IT产品线大数据解决方案规划总监徐兴海在2015中国大数据技术大会上如是说。他认为,云计算已过了炒作期,在公有云的带动下实现了规模化落地,“已经开始赚钱了”;而在去年,大数据的发展还在泡沫的破灭中,今年大数据已开始有走入应用的“苗头”,“而不仅仅是炒作”。
除了从“炒作”到走向“泡沫的幻灭”,备受瞩目的大数据在2015年还经历了哪些变化?又将如何迈入2016年?几个月后,由中国计算机协会大数据专家委员会编撰的第三版关于大数据的白皮书将发布,大数据专家委员会副秘书长潘柱延却“提前泄密”,他分析了大数据行业的几个关键词:民生、多样性和融合性、政策拉动、大数据生态。
十大趋势不容忽视
据潘柱延介绍,今年大数据专家委列出了2016年大数据产业技术发展的十大趋势,而这些趋势可以解释上面提到的关键词。
“可视化技术推动大数据平民化被专家选为了第一大趋势,这是非常有意思的结论,工作组也感到很意外。”潘柱延解释,可视化作为技术形态能排到第一,其实背后隐藏着大数据的平民化,普通老百姓和常规的决策者能够更好地理解大数据的效果和价值。
大数据将引导多学科融合。不仅是计算机领域的科学家,数学等其他领域的科学家也将参与到大数据的前沿研究中。
大数据的安全和隐私也受到了持续关注。对大数据的威胁和对大数据所产生的副作用,以及大数据发展中的障碍会逐渐成为大数据领域的关注点。潘柱延指出,虽然现在并没有针对大数据攻击的大规模报道,但是安全和隐私方面的隐忧已令大家担忧,这也是阻碍大数据发展的问题之一。
还有许多新热点将持续融入大数据的模式中,形成更加平衡的路径。而且,大数据将在民生领域重点应用,提升社会治理的效果。“和民生相关的,如智慧城市、应急、反恐等都会是发展重点,专家组认为这样的领域可能实现爆发性的发展。”潘柱延说。
9月5日,国务院印发了《促进大数据发展行动纲要》,并指出:将在未来5至10年打造精准治理、多方协作的社会治理新模式,建立运行平稳、安全高效的经济运行新机制,构建以人为本、惠及全民的民生服务新体系。
大数据专家组认为,该纲要将对大数据的发展起到推动性的作用,成为大数据产业快速发展的催化剂和政策标杆,也将推动地方政府出台类似的配套政策。潘柱延指出:“除了学术、技术、商业的推动外,政策的扶持会产生很大作用,大数据相关的基础设施建设和大数据创业公司在双创政策的推动下,两个驱动力会快速带动大数据的发展。”
在学术技术研究上,深度分析会继续成为推动大数据智能应用的代表之一。美剧《疑犯追踪》中曾展示了大数据的最终极应用——人工智能体几乎主宰人类生死的场景。在该大数据会议上,IBM的专家也展示了2011年曾挑战人类智力竞赛并获得冠军的超级电脑系统Watson。潘柱延认为,在人工智能领域,涉及与人的相关能力延伸,比如,决策、预测、精准推介等都将继续是大数据技术和学术研究的重要应用关注点。
数据权属与数据主权将得到进一步关注,所有权属和主权的利益冲突和争夺都是来自数据资源化、数据价值化。不仅如此,大数据的应用领域还将从“老三样”迈进到“新三样”,即从互联网、金融、健康这三个增长点转换成城市、企业和工业数据这三大新增长点。
谈到人才和技术的生态方向,大数据专家组预测,开源将持续成为大数据发展的主导性的技术方向和技术平台,测评则会以良币驱逐劣币的方式引导优秀的大数据技术发展,而各种各样的创业创新大赛也会成为人才和技术生态完善的一个重要标准和驱动力。
大数据之变
根据2013年发布的大数据白皮书显示,十大关注点在于:数据的资源化,大数据的隐私问题突出,大数据与云计算等深度融合,基于大数据智能的出现,大数据分析的革命性方法,大数据安全,数据科学兴起,数据共享联盟,大数据新职业和更大的数据。
而2014年的十大关注点是:大数据从概念走向现实,大数据架构的多样化模式并存,大数据的安全和隐私,大数据的分析与可视化,大数据产业成为战略性产业,数据商品化与数据共享联盟化,基于大数据的推荐与预测流行,深度学习与大数据智能成为支撑,数据科学的兴起与大数据生态环境逐步完善。
基于此,潘柱延分析,从2013年到2014年,大数据从概念走向了价值。而从2014年到2015年,大数据出现了几个明显的变化点,如跨接融合、基础互换和基础突破等亟待解决的问题,从2015年到2016年,大数据最重要的变化则是民生、多样、政策和生态。
4年来,大数据受到关注的应用领域包括互联网、电子商务、金融和健康医疗等,最新的关注领域则是城市化、智慧城市、舆情分析、社会安全等。
据大数据专家组预测,2016年与城市、互联网交易和企业相关的三部分数据可能会取得突破性进展,未来一年的资本投入将对该趋势有所印证。
潘柱延透露,今年的大数据白皮书中重点讨论的是大数据开放共享。
在调研中,大数据专家组邀请了100多位专家讲述2016年的大数据计划以及对数据流转的态度。调研结果显示,业内专家都希望能自己收集数据,并利用收集的数据进行数据服务,希望能买到“数据机”,而专家和其所在的机构计划卖“数据机”的却非常少。
潘柱延指出,数据流转整体处在需求大于供给的状态,尤其是数据国际交换和卖数据。“希望通过政府开放共享,拉动数据交流和交换。政策性是大数据发展的重要指标,不可否认,大数据本身具有概念性,有泡沫存在,但是不能因为啤酒上有泡沫而放弃底下香浓的啤酒。”他强调。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31