如果你都不能向一个5岁的小孩解释清楚,那么你将很难将你的产品卖给其他人。产品数据分析的重点不是分析,别误会,你还是需要分析,但是它的故事和基于数据的推荐真的很重要。
复杂的分析造成的混乱将导致你获得完全相反的结果。你希望能够驱动工程和投资分析行为。如果你的分析是不清晰的,工程师就不能快速通过你的分析获得知识,那么你的分析就会失去价值。
关于数据分析的影响力的最终测试是根据工程和投资行为的改变程度。应该令数据分析变得容易,方便人们使用,得以实现改变。
在更广泛的时间段里看更多的数据可以给你在分析上有更多的信心。然而,遥测或日志作为单一的传递途径会被捕捉到的特性所限制。一般来说,一个单一的途径只讲述产品的一部分。
相同分析+相同原理=相同故事
你需要的是其他数据源。可以是所有被登记在某处的SQL操作记录,或者是你有工具可以从你的用户那里获得日志样本。更多的数据源也会让你确定你的故事是否一致。更多的数据不能给你更多得洞察力。但是更多的数据源可以。
亮眼的最新工具使用起来很有趣,有时候也很管用。但是,你还记的你的数据分析的影响力的最终测试吗?
你希望工具变的容易,能够被人们所使用并得到自己想要的改变,但是改变不是这么容易的。从文章《你的大脑在工作》即《Your Brain at Work》学到3点,希望大家能牢牢记住,它们能给与你们最大程度的帮助来促进改变。
对于你的工程师伙伴而言,令工具安全很重要,它们可以被使用和促进改变。通过使用你熟悉的工具,讲述那些快速吸引大家注意力的故事。远离最近,最酷的可视化技术除非它们在你的故事中必不可少。
深入分析核心信息
重复核心信息,不断的重复
除非你正在推荐一个新工具的使用,重点不是在工具,而是你故事的核心信息。
指标是指你的关键性能指标(KPI)。它们可能以图表,坐标或表的形式表现。你的分析不能就此止步。指标只是数据驱动工程‘3I’里面的第一个‘I’,告诉别人一个围绕数据的充满洞察力的故事,然后建议他们投资。你是改变的代理人,你的分析必须充满你的见解和对投资的建议。
数据永远都是不干净的。这就是为什么我常常觉得自己像一个门卫。作为数据门卫,我很少相信里面的数据以及它们的格式是正确的。我总是从使用‘R语言的可能性和统计的介绍’中应用Kern’s CUSS,为了能够理解数据中心,数据的异常特征,数据的传播和数据的形状。
中心:数据的总体趋势所在
异常特征:有缺失的数据点?离群值?集群?
传播:数据产生哪些变化?
形状:如果你来绘制数据,数据的形状是什么?
了解数据如何生成和数据的CUSS可以让你作出更好且合理的见解和投资。
数据收集的成本经常是解决业务和工程问题的最终答案的一大障碍。你几乎总是能得到不完整的答案,虽然比你手中已有的答案好。
《如何测试任何事》(How To Measure Anything)的作者推荐我们可以问这个问题:
“是否存在一个测试的方法可以减少不确定性,足够来确定测试的成本?”
即使你没有相应的工具来明确的回答特定的组件是否有这个问题。你也可以消除一些组件,通过廉价的方式来减少不确定性。也许你可以凝聚几个不同来源的数据,得到一些非常粗略的结果,让事情朝着正确的方向前进。
让你或你的团队朝着正确的方向前进比得到超级准确的,确切的答案更重要。
产品数据分析的优点是看到实际用户使用你的软件产品的足迹。有时你会得到一个很好的的足迹。但也有可能,你得到的部分足迹让你的调查更加困难。无论如何,遥测和日志的足迹都是现实的反映。
架构知识是伟大的资产。但是,遥测和日志通过确凿的证据告诉我们实际发生了什么,结果并不是我们希望看到的。作为一名数据科学家,如果你对数据有着独特的看法。那么你看到的软件,就是软件的真实情况。
这是很强大的,因为你不仅有足够的证据显示软件是如何工作的,也可以对广泛的用户有针对性的洞察。你可以声称:“77%的用户沿着的这条编程路径是和软件设计矛盾的。”相信你的用户留下的足迹,但是要重复检查。在‘统计学习的元素’这篇文章中,有一句引言我很喜欢:“正如我相信上帝一样,我也相信他人带来的数据。”
数据分析咨询请扫描二维码
CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14在当今高速发展的技术环境下,企业正在面临前所未有的机遇和挑战。数字化转型已成为企业保持竞争力和应对市场变化的必由之路。要 ...
2024-11-13爬虫技术在数据分析中扮演着至关重要的角色,其主要作用体现在以下几个方面: 数据收集:爬虫能够自动化地从互联网上抓取大量数 ...
2024-11-13在数据分析中,数据可视化是一种将复杂数据转化为图表、图形或其他可视形式的技术,旨在通过直观的方式帮助人们理解数据的含义与 ...
2024-11-13在现代银行业中,数字化用户行为分析已成为优化产品和服务、提升客户体验和提高业务效率的重要工具。通过全面的数据采集、深入的 ...
2024-11-13在这个数据飞速增长的时代,企业若想在竞争中占据优势,必须充分利用数据分析优化其营销策略。数据不仅有助于理解市场趋势,还可 ...
2024-11-13数据分析行业的就业趋势显示出多个积极的发展方向。随着大数据和人工智能技术的不断进步,数据分析在各行各业中的应用变得越来越 ...
2024-11-13市场数据分析是一门涉及多种技能和工具的学科,对企业在竞争激烈的市场中保持竞争力至关重要。通过数据分析,企业不仅可以了解当 ...
2024-11-13数据分析与数据挖掘是数据科学领域中两个关键的组成部分,它们各有独特的目标、方法和应用场景。尽管它们经常在实际应用中结合使 ...
2024-11-13在如今这个数据驱动的时代,数据分析能力已经成为许多行业的重要技能。无论是为工作需要,还是为了职业转型,掌握数据分析都能够 ...
2024-11-13在如今这个数据驱动的时代,数据分析能力已经成为许多行业的重要技能。无论是为工作需要,还是为了职业转型,掌握数据分析都能够 ...
2024-11-13作为一名业务分析师,你肩负着将业务需求转化为技术解决方案的重任。面试这一角色时,涉及的问题多种多样,涵盖技术技能、分析能 ...
2024-11-13自学数据分析可能看似一项艰巨的任务,尤其在开始时。但是,通过一些策略和方法,你可以系统地学习和掌握数据分析的相关知识和技 ...
2024-11-10Excel是数据分析领域中的一款强大工具,它凭借其灵活的功能和易用的界面,成为了许多数据分析师和从业者的首选。无论是简单的数 ...
2024-11-10在快速发展的商业环境中,数据分析能力已经成为许多行业的核心竞争力。无论是初学者还是经验丰富的专家,搭建一个有效的数据分析 ...
2024-11-10