大数据时代数据资产管理“五星模型”
伴随着大数据时代的悄然来临,数据的价值得到人们的广泛认同,对数据的重视提到了前所未有的高度。数据已经作为企业重要资产被广泛应用于盈利分析与预测、客户关系管理、合规性监管、运营风险关理等业务当中。
大数据与数据资产管理
数据就像企业的根基。然而并非所有数据都可能成为资产。如果没有将数据视为资产加以有效管理,即使数据再多,对于企业来说也只是垃圾和负担。在传统企业数据资产管理的过程中,以下六类问题非常普遍:
数据架构失控;
元数据管理混乱;
数据标准缺失;
数据质量参差不齐;
数据增长无序;
数据安全问题突出
导致这些问题的根本原因是数据资产管理与企业IT信息化的过程紧密相连。企业的IT建设过程不可能一蹴而就,而是通过长期不断的迭代演进而来。在这个过程中,大量数据沉睡在企业IT系统的存储介质中,没有得到充分发挥其价值的机会。
数据资产管理的核心
究竟具备什么样的特性,才可以将数据定义为资产呢?我们可以通过以下三个标准判断:可控制,可量化、可变现。
对于如何通过高效的数据资产管理,帮助企业凭借高质量的数据提供更精准的产品和服务、降低成本并控制风险,从而提升企业的核心竞争力,有人提出了由“三个基础”和“两个飞轮”组成的“数据资产管理五星模型”。
三个基础:
1.数据架构:驱动企业架构成熟度
“数据驱动一切”,对于大数据时代的企业发展来说,一点也不过分。在企业中,我们不难看到ERP、CRM、财务系统、技术架构、数据中心的运营和维护……,这些资源都有专人负责管理。而当数据成为企业核心资产后,又由谁来负责呢?
IT应该只负责How to Do的问题。改变架构,应该先从人改变;企业的变革,应该先从组织变革做起。当数据成为核心资产,企业应该设立专业责数据架构和管理的跨项目的专业数据管理实体化,或是虚拟的组织,不断完善数据架构,提升企业在数据规划、设计、开发和交付的质量,将IT系统建设生命周期从头到尾管理起来。
2.数据治理:治而不乱,让数据变成资产
现在IT部门最悲催的是,IT部门不是数据的owner,但当数据出现问题时却都来找IT部门:怪数据不准确、不可靠、不安全。
实际上,数据驱动的是企业的核心业务,因此数据治理不应该只是IT部门的职责。它还需要得到业务部门的广泛参与,通过部门间的沟通持续提供针对企业未来状态愿景的业务决策、业务定义、数据质量过程、以及开发优先级等方面的支持。共同商讨出的这个标准不一定最优,但却是在目前的工作实践中最有效、最合适的。
3.数据共享:大数据的基础
共享经济开启了新时代,数据共享是大数据的基础。所有基于互联网提供的工具解决的都是信任问题,没有信任作为基础,就没有共享的存在。
首先要在企业内部解决共享数据的问题。在大数据以前,企业都是用ESB,但人们逐渐发现,只有企业总线是无法解决问题的。因为服务的解决只是把复杂的问题用简单的方法封装起来,但看起来完美的调用并没有解决数据的核心问题,如数据的安全、质量、交互、价值,只是用service进行完美封装,但并没有得到解决。
现在通常存在一个悖论:企业建设大数据中心时投入的资金,要远远大于从数据中心中获得的收益。真正用到数据的时候,我们才发现,数据的质量低下,影响分析精度;没有清晰元数据,数据无法理解和运用,数据分析无从入手;无法充分利用数据,可以使用于分析和应用的数据只是冰山一角;数据访问不受限制,数据安全问题突出……种种问题的产生才让我们看到,我们建立的不是大数据中心,而是大数据沼泽!
因此,在企业建立大数据中心之初,就要避免单纯将数据整合到一起而不加以有效的管理。对于中小企业,大数据的敏捷化之道就是场景化驱动。一定要围绕企业最根本的业务需求,而不是为了大数据而大数据,不是说因为Hadoop火,我就一定要使用Hadoop。中小企业需要更灵活、更快速、更高性价比的解决方案。
两个飞轮
1.数据增值与变现
在解决好管理的基础之后,才能谈到数据的增值和变现。数据的增值与变现应该分别从企业内、外两个角度来看。
对内强化能力,数据资产增值:对绝大多数的企业来说,并不是用户不够,而是没有把用户经营好。不是企业的产品和服务不够,而是太多。当企业形成了一套整体的数据思维之后,就要分析如何在企业内部重构产品、重构用户定义,重新审视主营业务的用户是不是最佳的,用没有高价值的用户还没有被挖掘出来,有没有长尾的价值还没有发挥出来。
经营内部后,我们才能开始实现对外部更好的经营。
数据资产变现:对外呈现价值:企业在面对客户维度不够、产品信息不全等问题时,就要主动拓展到企业外部,进行进行数据跨界合作,补全客户信息及产品流通信息,实现数据增值,最终驱动主营业务成长。
2.场景变现
我们现在经常能听到一句话:无场景不驱动。貌似场景可以革命一切。到底场景带来什么?
基于大数据变现场景化,是数据应用的必然趋势。没数有据变为现这场景的数据,也就意味着它只会是一堆没用的垃圾; 但要在“场景营销”中获胜,企业需要应用数据进行更有效的分析,不断完善应用和变现的场景。
以互联网保险为例。程永新认为未来所以的变现公司都有可能是互联网公司,因为保险行业有非常好的现金流。它没有实质性的产品,只是一纸合约,因此非常容易实现互联网化。目前,互联网非车险保费主要集中在四类,其中基于大数据的场景化产品(如网络购物、出 行、健康)占大部分。
而数据跨界合作推动转型升级则是传统企业数据变现的重要场景。企业数据增值的形式,不仅仅是数据租售,或者数据分析结果的变现;而是通过跨界战略合作,用数据共享来推动彼此主营业务,实现远高于简单的数据租售速来的直接经济价值。
下图展示的是企业大数据建设一般建议推进思路。
值得注意的是,在我们思考的时候往往是自上而下进行,但实际用技术落地一定是自下而上的。在通过大数据建设来驱动业务的过程中,我们最有效的办法就是小步快跑,不断找一些小的场景,尝试小的平台,用高质量的数据指导企业作出明智及有效的决策。
数据分析咨询请扫描二维码
在准备数据分析师面试时,掌握高频考题及其解答是应对面试的关键。为了帮助大家轻松上岸,以下是10个高频考题及其详细解析,外加 ...
2024-12-20互联网数据分析师是一个热门且综合性的职业,他们通过数据挖掘和分析,为企业的业务决策和运营优化提供强有力的支持。尤其在如今 ...
2024-12-20在现代商业环境中,数据分析师是不可或缺的角色。他们的工作不仅仅是对数据进行深入分析,更是协助企业从复杂的数据信息中提炼出 ...
2024-12-20随着大数据时代的到来,数据驱动的决策方式开始受到越来越多企业的青睐。近年来,数据分析在人力资源管理中正在扮演着至关重要的 ...
2024-12-20在数据分析的世界里,表面上的技术操作只是“入门票”,而真正的高手则需要打破一些“看不见的墙”。这些“隐形天花板”限制了数 ...
2024-12-19在数据分析领域,尽管行业前景广阔、岗位需求旺盛,但实际的工作难度却远超很多人的想象。很多新手初入数据分析岗位时,常常被各 ...
2024-12-19入门数据分析,许多人都会感到“难”,但这“难”究竟难在哪儿?对于新手而言,往往不是技术不行,而是思维方式、业务理解和实践 ...
2024-12-19在如今的行业动荡背景下,数据分析师的职业前景虽然面临一些挑战,但也充满了许多新的机会。随着技术的不断发展和多领域需求的提 ...
2024-12-19在信息爆炸的时代,数据分析师如同探险家,在浩瀚的数据海洋中寻觅有价值的宝藏。这不仅需要技术上的过硬实力,还需要一种艺术家 ...
2024-12-19在当今信息化社会,大数据已成为各行各业不可或缺的宝贵资源。大数据专业应运而生,旨在培养具备扎实理论基础和实践能力,能够应 ...
2024-12-19阿里P8、P9失业都找不到工作?是我们孤陋寡闻还是世界真的已经“癫”成这样了? 案例一:本硕都是 985,所学的专业也是当红专业 ...
2024-12-19CDA持证人Louis CDA持证人基本情况 我大学是在一个二线城市的一所普通二本院校读的,专业是旅游管理,非计算机非统计学。毕业之 ...
2024-12-18最近,知乎上有个很火的话题:“一个人为何会陷入社会底层”? 有人说,这个世界上只有一个分水岭,就是“羊水”;还有人说,一 ...
2024-12-18在这个数据驱动的时代,数据分析师的技能需求快速增长。掌握适当的编程语言不仅能增强分析能力,还能帮助分析师从海量数据中提取 ...
2024-12-17在当今信息爆炸的时代,数据分析已经成为许多行业中不可或缺的一部分。想要在这个领域脱颖而出,除了热情和毅力外,你还需要掌握 ...
2024-12-17数据分析,是一项通过科学方法处理数据以获取洞察并支持决策的艺术。无论是在商业环境中提升业绩,还是在科研领域推动创新,数据 ...
2024-12-17在数据分析领域,图表是我们表达数据故事的重要工具。它们不仅让数据变得更加直观,也帮助我们更好地理解数据中的趋势和模式。相 ...
2024-12-16在当今社会,我们身处着一个飞速发展、变化迅猛的时代。不同行业在科技进步、市场需求和政策支持的推动下蓬勃发展,呈现出令人瞩 ...
2024-12-16在现代商业世界中,数据分析师扮演着至关重要的角色。他们通过解析海量数据,为企业战略决策提供有力支持。要有效完成这项任务, ...
2024-12-16在当今数据爆炸的时代,数据分析师是组织中不可或缺的导航者。他们通过从大量数据中提取可操作的洞察力,帮助企业在竞争激烈的市 ...
2024-12-16