SPSS进行独立样本的T检验
对于相互独立的两个来自正态总体的样本,利用独立样本的T检验来检验这两个样本的均值和方差是否来源于同一总体。在SPSS中,独立样本的T检验由“Independent-Sample T Test”过程来完成。
实例
在有小麦丛矮病的麦田里,调查了13株病株和11株健株的植株高度,分析健株高度是否高于病株。其调查数据如下:
健株 26.0 32.4 37.3 37.3 43.2 47.3 51.8 55.8 57.8 64.0 65.3
病株 16.7 19.8 19.8 23.3 23.4 25.0 36.0 37.3 41.4 41.7 45.7 48.2 57.8
该数据保存在“DATA4-3.SAV”文件中,变量格式如图4-6,状态变量中:1表示病株,2表示健株。
图4-6
1)准备分析数据
在数据编辑窗口输入分析的数据,如图4-6所示。或者打开需要分析的数据文件“DATA4-3.SAV”。
2)启动分析过程
在主菜单选中“Analyze”中的“Compare Means”,在下拉菜单中选中“Independent -Sample T Test”命令。出现图4-7设置对话框。。
图4-7 独立样本T检验窗口
3)设置分析变量
从“Test Variable(s):”从左边的变量列表中选中变量后,点击右拉按钮后,这个变量就进入到检验分析“Test Variable(s):”框里,用户可以从左边变量列表里选择一个或多个。本例选择“小麦丛矮病[株高]”。
“Grouping Variable(s):”栏是分组变量栏。从左边的变量列表中选中分组变量后,按右拉按钮,这个变量就进入到“Grouping Variable(s):”框里。本例选择“状态”变量。
“Define Groups”按钮是定义分组变量的分组值。当该按钮可用时,出现图4-8对话框。
图4-8 定义分组值对话框
如果分组变量是离散型数值变量应选择“Use specified values”项,该项下面的“Group 1”和“Group 2”栏用于输入分组
变量值;字符型数据输入相应分组字符。若分组变量是连续型变量,应选择“Cut point”项,分组变量会按该项输入值分为大于和小于两组。
本例选择“Use specified values”项,在“Group 1”栏输入1;在“Group 2”栏输入2。按“Continue”按钮退回上一级对话框。
4)设置其他参数
点击“Options”按钮,打开设置检验的置信度和缺失值对话框。在“Confidence Interval:”框输入置信度水平,系统默认为95%;“Missing Values”框里的“Exclude cases analysis by analysis”栏,是只排除分析变量为缺失值的选择项,“Exclude cases listwise”是排除任何含有缺失值的选择项。
5)提交执行
输入完成后,在过程主窗口中单击“OK”按钮,SPSS输出分析结果如表4-5和表4-6。
6) 结果与分析
结果
表4-5 分组统计量列表 Group Statistics
表4-6 独立样本的检验结果 Independent Samples Test
表4-6“Levene's Test for Equality of Variances”列方差齐次性检验结果:F值为0.038,显著性概率为0.847,因此两组方差不显著。
那么应该从表4-6 的“Equal vari ances assumed”行读取数值。t值是-2.539,Sig. (2-tailed)是双尾t检验的显著性概率0.019,小于0.05。可以得出结论:病株与健株的株高差异显著。
两组的株高均值之差为13.56,平均病株低于健株13.56。差值的标准误为5.341。
数据分析咨询请扫描二维码
CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14在当今高速发展的技术环境下,企业正在面临前所未有的机遇和挑战。数字化转型已成为企业保持竞争力和应对市场变化的必由之路。要 ...
2024-11-13爬虫技术在数据分析中扮演着至关重要的角色,其主要作用体现在以下几个方面: 数据收集:爬虫能够自动化地从互联网上抓取大量数 ...
2024-11-13在数据分析中,数据可视化是一种将复杂数据转化为图表、图形或其他可视形式的技术,旨在通过直观的方式帮助人们理解数据的含义与 ...
2024-11-13在现代银行业中,数字化用户行为分析已成为优化产品和服务、提升客户体验和提高业务效率的重要工具。通过全面的数据采集、深入的 ...
2024-11-13在这个数据飞速增长的时代,企业若想在竞争中占据优势,必须充分利用数据分析优化其营销策略。数据不仅有助于理解市场趋势,还可 ...
2024-11-13数据分析行业的就业趋势显示出多个积极的发展方向。随着大数据和人工智能技术的不断进步,数据分析在各行各业中的应用变得越来越 ...
2024-11-13市场数据分析是一门涉及多种技能和工具的学科,对企业在竞争激烈的市场中保持竞争力至关重要。通过数据分析,企业不仅可以了解当 ...
2024-11-13数据分析与数据挖掘是数据科学领域中两个关键的组成部分,它们各有独特的目标、方法和应用场景。尽管它们经常在实际应用中结合使 ...
2024-11-13在如今这个数据驱动的时代,数据分析能力已经成为许多行业的重要技能。无论是为工作需要,还是为了职业转型,掌握数据分析都能够 ...
2024-11-13在如今这个数据驱动的时代,数据分析能力已经成为许多行业的重要技能。无论是为工作需要,还是为了职业转型,掌握数据分析都能够 ...
2024-11-13作为一名业务分析师,你肩负着将业务需求转化为技术解决方案的重任。面试这一角色时,涉及的问题多种多样,涵盖技术技能、分析能 ...
2024-11-13自学数据分析可能看似一项艰巨的任务,尤其在开始时。但是,通过一些策略和方法,你可以系统地学习和掌握数据分析的相关知识和技 ...
2024-11-10Excel是数据分析领域中的一款强大工具,它凭借其灵活的功能和易用的界面,成为了许多数据分析师和从业者的首选。无论是简单的数 ...
2024-11-10在快速发展的商业环境中,数据分析能力已经成为许多行业的核心竞争力。无论是初学者还是经验丰富的专家,搭建一个有效的数据分析 ...
2024-11-10