
SPSS进行独立样本的T检验
对于相互独立的两个来自正态总体的样本,利用独立样本的T检验来检验这两个样本的均值和方差是否来源于同一总体。在SPSS中,独立样本的T检验由“Independent-Sample T Test”过程来完成。
实例
在有小麦丛矮病的麦田里,调查了13株病株和11株健株的植株高度,分析健株高度是否高于病株。其调查数据如下:
健株 26.0 32.4 37.3 37.3 43.2 47.3 51.8 55.8 57.8 64.0 65.3
病株 16.7 19.8 19.8 23.3 23.4 25.0 36.0 37.3 41.4 41.7 45.7 48.2 57.8
该数据保存在“DATA4-3.SAV”文件中,变量格式如图4-6,状态变量中:1表示病株,2表示健株。
图4-6
1)准备分析数据
在数据编辑窗口输入分析的数据,如图4-6所示。或者打开需要分析的数据文件“DATA4-3.SAV”。
2)启动分析过程
在主菜单选中“Analyze”中的“Compare Means”,在下拉菜单中选中“Independent -Sample T Test”命令。出现图4-7设置对话框。。
图4-7 独立样本T检验窗口
3)设置分析变量
从“Test Variable(s):”从左边的变量列表中选中变量后,点击右拉按钮后,这个变量就进入到检验分析“Test Variable(s):”框里,用户可以从左边变量列表里选择一个或多个。本例选择“小麦丛矮病[株高]”。
“Grouping Variable(s):”栏是分组变量栏。从左边的变量列表中选中分组变量后,按右拉按钮,这个变量就进入到“Grouping Variable(s):”框里。本例选择“状态”变量。
“Define Groups”按钮是定义分组变量的分组值。当该按钮可用时,出现图4-8对话框。
图4-8 定义分组值对话框
如果分组变量是离散型数值变量应选择“Use specified values”项,该项下面的“Group 1”和“Group 2”栏用于输入分组
变量值;字符型数据输入相应分组字符。若分组变量是连续型变量,应选择“Cut point”项,分组变量会按该项输入值分为大于和小于两组。
本例选择“Use specified values”项,在“Group 1”栏输入1;在“Group 2”栏输入2。按“Continue”按钮退回上一级对话框。
4)设置其他参数
点击“Options”按钮,打开设置检验的置信度和缺失值对话框。在“Confidence Interval:”框输入置信度水平,系统默认为95%;“Missing Values”框里的“Exclude cases analysis by analysis”栏,是只排除分析变量为缺失值的选择项,“Exclude cases listwise”是排除任何含有缺失值的选择项。
5)提交执行
输入完成后,在过程主窗口中单击“OK”按钮,SPSS输出分析结果如表4-5和表4-6。
6) 结果与分析
结果
表4-5 分组统计量列表 Group Statistics
表4-6 独立样本的检验结果 Independent Samples Test
表4-6“Levene's Test for Equality of Variances”列方差齐次性检验结果:F值为0.038,显著性概率为0.847,因此两组方差不显著。
那么应该从表4-6 的“Equal vari ances assumed”行读取数值。t值是-2.539,Sig. (2-tailed)是双尾t检验的显著性概率0.019,小于0.05。可以得出结论:病株与健株的株高差异显著。
两组的株高均值之差为13.56,平均病株低于健株13.56。差值的标准误为5.341。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05