
SPSS进行独立样本的T检验
对于相互独立的两个来自正态总体的样本,利用独立样本的T检验来检验这两个样本的均值和方差是否来源于同一总体。在SPSS中,独立样本的T检验由“Independent-Sample T Test”过程来完成。
实例
在有小麦丛矮病的麦田里,调查了13株病株和11株健株的植株高度,分析健株高度是否高于病株。其调查数据如下:
健株 26.0 32.4 37.3 37.3 43.2 47.3 51.8 55.8 57.8 64.0 65.3
病株 16.7 19.8 19.8 23.3 23.4 25.0 36.0 37.3 41.4 41.7 45.7 48.2 57.8
该数据保存在“DATA4-3.SAV”文件中,变量格式如图4-6,状态变量中:1表示病株,2表示健株。
图4-6
1)准备分析数据
在数据编辑窗口输入分析的数据,如图4-6所示。或者打开需要分析的数据文件“DATA4-3.SAV”。
2)启动分析过程
在主菜单选中“Analyze”中的“Compare Means”,在下拉菜单中选中“Independent -Sample T Test”命令。出现图4-7设置对话框。。
图4-7 独立样本T检验窗口
3)设置分析变量
从“Test Variable(s):”从左边的变量列表中选中变量后,点击右拉按钮后,这个变量就进入到检验分析“Test Variable(s):”框里,用户可以从左边变量列表里选择一个或多个。本例选择“小麦丛矮病[株高]”。
“Grouping Variable(s):”栏是分组变量栏。从左边的变量列表中选中分组变量后,按右拉按钮,这个变量就进入到“Grouping Variable(s):”框里。本例选择“状态”变量。
“Define Groups”按钮是定义分组变量的分组值。当该按钮可用时,出现图4-8对话框。
图4-8 定义分组值对话框
如果分组变量是离散型数值变量应选择“Use specified values”项,该项下面的“Group 1”和“Group 2”栏用于输入分组
变量值;字符型数据输入相应分组字符。若分组变量是连续型变量,应选择“Cut point”项,分组变量会按该项输入值分为大于和小于两组。
本例选择“Use specified values”项,在“Group 1”栏输入1;在“Group 2”栏输入2。按“Continue”按钮退回上一级对话框。
4)设置其他参数
点击“Options”按钮,打开设置检验的置信度和缺失值对话框。在“Confidence Interval:”框输入置信度水平,系统默认为95%;“Missing Values”框里的“Exclude cases analysis by analysis”栏,是只排除分析变量为缺失值的选择项,“Exclude cases listwise”是排除任何含有缺失值的选择项。
5)提交执行
输入完成后,在过程主窗口中单击“OK”按钮,SPSS输出分析结果如表4-5和表4-6。
6) 结果与分析
结果
表4-5 分组统计量列表 Group Statistics
表4-6 独立样本的检验结果 Independent Samples Test
表4-6“Levene's Test for Equality of Variances”列方差齐次性检验结果:F值为0.038,显著性概率为0.847,因此两组方差不显著。
那么应该从表4-6 的“Equal vari ances assumed”行读取数值。t值是-2.539,Sig. (2-tailed)是双尾t检验的显著性概率0.019,小于0.05。可以得出结论:病株与健株的株高差异显著。
两组的株高均值之差为13.56,平均病株低于健株13.56。差值的标准误为5.341。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08LSTM 输出不确定的成因、影响与应对策略 长短期记忆网络(LSTM)作为循环神经网络(RNN)的一种变体,凭借独特的门控机制,在 ...
2025-07-07统计学方法在市场调研数据中的深度应用 市场调研是企业洞察市场动态、了解消费者需求的重要途径,而统计学方法则是市场调研数 ...
2025-07-07CDA数据分析师证书考试全攻略 在数字化浪潮席卷全球的当下,数据已成为企业决策、行业发展的核心驱动力,数据分析师也因此成为 ...
2025-07-07剖析 CDA 数据分析师考试题型:解锁高效备考与答题策略 CDA(Certified Data Analyst)数据分析师考试作为衡量数据专业能力的 ...
2025-07-04SQL Server 字符串截取转日期:解锁数据处理的关键技能 在数据处理与分析工作中,数据格式的规范性是保证后续分析准确性的基础 ...
2025-07-04CDA 数据分析师视角:从数据迷雾中探寻商业真相 在数字化浪潮席卷全球的今天,数据已成为企业决策的核心驱动力,CDA(Certifie ...
2025-07-04CDA 数据分析师:开启数据职业发展新征程 在数据成为核心生产要素的今天,数据分析师的职业价值愈发凸显。CDA(Certified D ...
2025-07-03