
数据分析的几大误区
上大学时,我和另一个姑娘(某理科大神)经常搭伙做饭。有天我俩一起去超市买油,站在琳琅满目的货架前,我直接拎起一瓶,冲她叫:“就拿这瓶吧,最便宜!”姑娘白了我一眼,转头说道:“克单价一点都不便宜好不好!数学是体育老师教的吧?”接着眼神刷刷两下扫完整个货架,心算完毕,拎起另一瓶说:“这克单价最便宜,拿这个!”我当时就囧了,讪讪地拎起油,念叨着:总金额不便宜呢……
大千世界当中,我们总是需要“数据”去辅助下判断、做抉择。生活当中,可能仅需要描述性数据就足够了,比如你买油是看克单价还是总金额。但工作当中,却必须深谙各种复杂的数据分析方法,数据成为建功立业、奖惩论责的重要手段。数据本身是客观的,但如何捯饬数据,却是主观的。数据可以“作弊”,可以有“偏见”,也可以用来糊弄别人,麻痹自己。
所以,知道数据的把戏,比机械地完成数据,对工作的实践意义更大,至少可以保证我们不会被数据“玩弄”:
你买油是按照克单价?还是总金额?这个例子比较简单。实际工作中比这个要复杂很多,比如销售人员的绩效如何评估——应该按照总销售额,还是可比店的销售额?是按照所有产品的销售额?还是新品的销售额?是按照单店绩效?还是单人绩效?是按照工作时间内的绩效?还是不计工作时间、将加班时间也计算在内的绩效?如果是跨国公司,还涉及到用人民币、还是美元计算?
计量单位的不同、测算范畴的不同,得出的结果也就不同——所以,公司开绩效评估大会或者任务指标分配大会,一般就是打数据仗,然后你会发现,结局往往不取决于最准确的数据,而取决于最大的嗓门……
平均数是一个非常强大的描述性统计数据,也被广泛用于各种判断当中,比如时不时会有新闻说“房价在涨”、“我国平均收入水平上升XXX”,“某某学校的升学率高达90%”……平均数最大的问题是,忽略了偏离方差的“异常值”——比如马云的收入就是个异常值。这个时候,就需要再看一看中位数。
每一次销售会,我们会看几个主要数据,类似“单人产量”“单店产量”“流失率”等等。然而,在对这些数据下结论的时候,我们得万分谨慎,因为一方面,它取决于计量单位和范畴,另一方面,还得均衡的看平均数和中位数。如此才能甄别出来,哪些是由于“异常值”造成的偶然现象,而哪些是一直存在的普遍现象,防止看错问题冤枉人。当然有一种情况是不需要区分中位数和平均数的,比如今年北大古生物专业的毕业生就业率(就一个姑娘)。
每个企业的绩效评估方法可能不一样,但逻辑应该相似,对所有衡量指标设置不同权重后,进行综合评估。当然,对于那种只有一个指标(老板心情指标)的公司,统计学表示很无力。
除了绩效评估,最常用“权重”的就是生意预测。不同要素对生意结果的影响力不同,且随时间而变,比如打广告、公关活动、或者店内促销,哪个对生意贡献最大?哪一种具体的广告形式对生意贡献最大?是不是赞助《中国好声音》就一定比投放传统电视广告,带来的销量更大?只有我们知道不同因素的权重,才会做成更加科学的投资决策。
销售额下降了,怎么办?相信大多数销售都会抓狂,开始马不停蹄的琢磨问题解决之道了。但去年我听到了一句特别洒脱的话:“销量下降,有时候只是个现象,并不一定是问题。你怎么知道这不是我们有意为之的呢?”呃…好吧,这豁达和深刻,不是我等凡夫俗子能理解的。
数据往往只表达一种结果。如果想要知道数据背后的动机和原因,还要借助更复杂的统计学手段、或者非数据手段。主动为之的“坏数据”以及被动承受的“坏数据”,两者之间的动机差异,会造成迥然不同的行为结果。比如有一次销售会议,某区域负责人指着自己惨淡的员工流失率指标,轻描淡写的解释说:“高流失率是我主动淘汰了一些人,因XXX原因,下个季度新人马上到岗。”想象一下,如果我们不了解这个动机,可能这位区域负责人就要蹲小黑屋了。
最经典的例子就是收入数据。经常有报道说:公务员收入其实很低,劝大家不要错怪公务员。但问题是,工资收入是低,但非工资收入可能不低。当然,这种情况不仅限于公共组织。其实无论任何组织,只要挣的花的不是自己的钱,就都可能出现这种“工资不等于收入”的情况。
在具体业务中,“精确不等于准确”可能出现在两种情境中——总结归纳、分析预测。
比如消费者调研,一般都会有定性和定量两种方法。如果没有定性分析,定量分析就可能陷入“虚假精确”的陷阱。如果你的调研对象有问题,那么,就算再辛苦的计算和再精确的数据,其实都没有意义。又比如广告测试,精确的测试结果真的有实际意义吗?
又比如销量预测,每个人心里都明白,这是无法准确预测的,你只能无限接近,却不能完全准确,因为“预测未来”本来就是上帝才能搞定的事,所以我们能做的,只能是在保证方向准确的情况下,尽量精确。但也不必过于花费力气、苛求预测数据的精确,因为这不会增加多少实际意义,还不如花多点时间研究其他可操作性强的数据
总之,尽量避免追求虚假的准确和错误的确定性。
我老板的经典口头禅就是:“你们这些人,总是自说自话、以果推因分析法,错把相关性当成因果性,把偶然性当成必然性。”这句口头禅可真是太强大了,因为可应用范围颇广,躺枪几率也颇高,导致我们现在不得不日省三次:“有没有自说自话?有没有以果推因?”
以前还听过一个段子,一个领导手下的两个部门同时做生意报告。A部门搞不清楚自己生意为啥涨,B部门搞不清楚自己生意为啥降,结果最后的生意报告中,两个部门不约而同,提到了同一个原因——天气。只不过,A部门说,因为这段时间按天气冷导致A产品需求增大;B部门说,因为这段时间天气热导致B产品需求减少。我现在觉得吧,多亏这领导不是我老板,否则这两部门可以一起蹲小黑屋了。
这就是统计学最重要的价值——可以帮助我们排除无关因素,因为这些无关因素太容易让大家混淆了因果性和相关性的区别。
有公司做新品上市的消费者调研时,最后需求是:只要超过45%的人喜欢,就决定上市这个新品。其实这压根不用调研了。如果这个新品和对照组的产品本身差距不明显的话,且样本量足够大,肯定会有50%的人喜欢,这就是大数定律的基本常识。
初三接近中考时,老师突然要调座位,而且这次不按学号、不按个子、也不按“好帮差”原则,而是直接按成绩调座位——成绩好的人坐左边两组,成绩不好的坐右边两组。当时我还很懵懂,不明白为啥非要在复习备考的紧张时刻折腾调座位,因为和我关系非常好的小伙伴们都被调到右边两组了。
后来我终于懂了。因为接下来的两周,右边座位的同学们,一个接一个的被老师叫走谈话,然后,又一个接一个的,退学了。我想我这辈子都忘不了,那些同学一声不吭的低头收拾完书包,佝偻着腰沉重的走出教室前,回头望过来的最后一眼。那种悲伤和无奈的眼神,让我至今想起来都心酸喉梗。然后,当年我校的升学率就非常高。
企业当中数据作弊和偏见也不少见,比如通过压低头一年的数据、使得第二年增长率更高;比如选择错误的样本数据做市场调研;又比如常见的会计数据作弊。
总之,数据的把戏大有乾坤。一方面,我们需要数据去分析问题、印证结论,没有数据的虚谈是没有意义的,也是很难有定论的。另一方面,数据不是全部,我们不能成为“数据教”的人。过于追求数据的完美精确,容易让我们忽略那些无法用数据表现的关键要素,比如人的态度、动机和精神气;也容易忽略企业的最终目标。其实,在不该使用数据的使用数据,可能比在该用数据的时候没有数据,结果更可怕。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13