
scikit-learn的主要模块和基本使用
对于一些开始搞机器学习算法有害怕下手的小朋友,该如何快速入门,这让人挺挣扎的。
在从事数据科学的人中,最常用的工具就是R和Python了,每个工具都有其利弊,但是Python在各方面都相对胜出一些,这是因为scikit-learn库实现了很多机器学习算法。
我们假设输入时一个特征矩阵或者csv文件。
首先,数据应该被载入内存中。
scikit-learn的实现使用了NumPy中的arrays,所以,我们要使用NumPy来载入csv文件。
以下是从UCI机器学习数据仓库中下载的数据。
import numpy as np import urllib # url with dataset url = "http://archive.ics.uci.edu/ml/machine-learning-databases/pima-indians-diabetes/pima-indians-diabetes.data" # download the file raw_data = urllib.urlopen(url) # load the CSV file as a numpy matrix dataset = np.loadtxt(raw_data, delimiter=",") # separate the data from the target attributes X = dataset[:,0:7]
y = dataset[:,8]
我们要使用该数据集作为例子,将特征矩阵作为X,目标变量作为y。
大多数机器学习算法中的梯度方法对于数据的缩放和尺度都是很敏感的,在开始跑算法之前,我们应该进行归一化或者标准化的过程,这使得特征数据缩放到0-1范围中。scikit-learn提供了归一化的方法:
from sklearn import preprocessing # normalize the data attributes normalized_X = preprocessing.normalize(X) # standardize the data attributes standardized_X = preprocessing.scale(X)
在解决一个实际问题的过程中,选择合适的特征或者构建特征的能力特别重要。这成为特征选择或者特征工程。
特征选择时一个很需要创造力的过程,更多的依赖于直觉和专业知识,并且有很多现成的算法来进行特征的选择。
下面的树算法(Tree algorithms)计算特征的信息量:
from sklearn import metrics from sklearn.ensemble import ExtraTreesClassifier
model = ExtraTreesClassifier()
model.fit(X, y) # display the relative importance of each attribute print(model.feature_importances_)
scikit-learn实现了机器学习的大部分基础算法,让我们快速了解一下。
大多数问题都可以归结为二元分类问题。这个算法的优点是可以给出数据所在类别的概率。
from sklearn import metrics from sklearn.linear_model import LogisticRegression
model = LogisticRegression()
model.fit(X, y)
print(model) # make predictions expected = y
predicted = model.predict(X) # summarize the fit of the model print(metrics.classification_report(expected, predicted))
print(metrics.confusion_matrix(expected, predicted))
结果:
LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,
intercept_scaling=1, penalty=l2, random_state=None, tol=0.0001)
precision recall f1-score support0.0 0.79 0.89 0.84 500 1.0 0.74 0.55 0.63 268avg / total 0.77 0.77 0.77 768
[[447 53]
[120 148]]
这也是著名的机器学习算法,该方法的任务是还原训练样本数据的分布密度,其在多类别分类中有很好的效果。
from sklearn import metrics from sklearn.naive_bayes import GaussianNB
model = GaussianNB()
model.fit(X, y)
print(model) # make predictions expected = y
predicted = model.predict(X) # summarize the fit of the model print(metrics.classification_report(expected, predicted))
print(metrics.confusion_matrix(expected, predicted))
结果:
GaussianNB()
precision recall f1-score support0.0 0.80 0.86 0.83 500 1.0 0.69 0.60 0.64 268avg / total 0.76 0.77 0.76 768
[[429 71]
[108 160]]
k近邻算法常常被用作是分类算法一部分,比如可以用它来评估特征,在特征选择上我们可以用到它。
from sklearn import metrics from sklearn.neighbors import KNeighborsClassifier # fit a k-nearest neighbor model to the data model = KNeighborsClassifier()
model.fit(X, y)
print(model) # make predictions expected = y
predicted = model.predict(X) # summarize the fit of the model print(metrics.classification_report(expected, predicted))
print(metrics.confusion_matrix(expected, predicted))
结果:
KNeighborsClassifier(algorithm=auto, leaf_size=30, metric=minkowski,
n_neighbors=5, p=2, weights=uniform)
precision recall f1-score support0.0 0.82 0.90 0.86 500 1.0 0.77 0.63 0.69 268avg / total 0.80 0.80 0.80 768
[[448 52]
[ 98 170]]
分类与回归树(Classification and Regression Trees ,CART)算法常用于特征含有类别信息的分类或者回归问题,这种方法非常适用于多分类情况。
from sklearn import metrics from sklearn.tree import DecisionTreeClassifier # fit a CART model to the data model = DecisionTreeClassifier()
model.fit(X, y)
print(model) # make predictions expected = y
predicted = model.predict(X) # summarize the fit of the model print(metrics.classification_report(expected, predicted))
print(metrics.confusion_matrix(expected, predicted))
结果:
DecisionTreeClassifier(compute_importances=None, criterion=gini,
max_depth=None, max_features=None, min_density=None,
min_samples_leaf=1, min_samples_split=2, random_state=None,
splitter=best)
precision recall f1-score support0.0 1.00 1.00 1.00 500 1.0 1.00 1.00 1.00 268avg / total 1.00 1.00 1.00 768
[[500 0]
[ 0 268]]
SVM是非常流行的机器学习算法,主要用于分类问题,如同逻辑回归问题,它可以使用一对多的方法进行多类别的分类。
from sklearn import metrics from sklearn.svm import SVC # fit a SVM model to the data model = SVC()
model.fit(X, y)
print(model) # make predictions expected = y
predicted = model.predict(X) # summarize the fit of the model print(metrics.classification_report(expected, predicted))
print(metrics.confusion_matrix(expected, predicted))
结果:
SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.0,
kernel=rbf, max_iter=-1, probability=False, random_state=None,
shrinking=True, tol=0.001, verbose=False)
precision recall f1-score support0.0 1.00 1.00 1.00 500 1.0 1.00 1.00 1.00 268avg / total 1.00 1.00 1.00 768
[[500 0]
[ 0 268]]
除了分类和回归算法外,scikit-learn提供了更加复杂的算法,比如聚类算法,还实现了算法组合的技术,如Bagging和Boosting算法。
一项更加困难的任务是构建一个有效的方法用于选择正确的参数,我们需要用搜索的方法来确定参数。scikit-learn提供了实现这一目标的函数。
下面的例子是一个进行正则参数选择的程序:
import numpy as np from sklearn.linear_model import Ridge from sklearn.grid_search import GridSearchCV # prepare a range of alpha values to test alphas = np.array([1,0.1,0.01,0.001,0.0001,0]) # create and fit a ridge regression model, testing each alpha model = Ridge()
grid = GridSearchCV(estimator=model, param_grid=dict(alpha=alphas))
grid.fit(X, y)
print(grid) # summarize the results of the grid search print(grid.best_score_)
print(grid.best_estimator_.alpha)
结果:
GridSearchCV(cv=None,
estimator=Ridge(alpha=1.0, copy_X=True, fit_intercept=True, max_iter=None,
normalize=False, solver=auto, tol=0.001),
estimator__alpha=1.0, estimator__copy_X=True,
estimator__fit_intercept=True, estimator__max_iter=None,
estimator__normalize=False, estimator__solver=auto,
estimator__tol=0.001, fit_params={}, iid=True, loss_func=None,
n_jobs=1,
param_grid={‘alpha’: array([ 1.00000e+00, 1.00000e-01, 1.00000e-02, 1.00000e-03,
1.00000e-04, 0.00000e+00])},
pre_dispatch=2*n_jobs, refit=True, score_func=None, scoring=None,
verbose=0)
0.282118955686
1.0
有时随机从给定区间中选择参数是很有效的方法,然后根据这些参数来评估算法的效果进而选择最佳的那个。
import numpy as np from scipy.stats import uniform as sp_rand from sklearn.linear_model import Ridge from sklearn.grid_search import RandomizedSearchCV # prepare a uniform distribution to sample for the alpha parameter param_grid = {'alpha': sp_rand()} # create and fit a ridge regression model, testing random alpha values model = Ridge()
rsearch = RandomizedSearchCV(estimator=model, param_distributions=param_grid, n_iter=100)
rsearch.fit(X, y)
print(rsearch) # summarize the results of the random parameter search print(rsearch.best_score_)
print(rsearch.best_estimator_.alpha)
结果:
RandomizedSearchCV(cv=None,
estimator=Ridge(alpha=1.0, copy_X=True, fit_intercept=True, max_iter=None,
normalize=False, solver=auto, tol=0.001),
estimator__alpha=1.0, estimator__copy_X=True,
estimator__fit_intercept=True, estimator__max_iter=None,
estimator__normalize=False, estimator__solver=auto,
estimator__tol=0.001, fit_params={}, iid=True, n_iter=100,
n_jobs=1,
param_distributions={‘alpha’:
我们总体了解了使用scikit-learn库的大致流程,希望这些总结能让初学者沉下心来,一步一步尽快的学习如何去解决具体的机器学习问题。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08