大数据显示互联网行业加班最狠 怎么破?
“加班”这个词对于现代上班族来说一定不会陌生,尤其是在互联网行业奋斗的人们,而在互联网行业中的程序猿们更被誉为加班中的“战斗机”。近日,滴滴发布的《中国智能出行2015大数据报告》更是从侧面印证了这一点,数据中显示,北京是全国加班最严重的地方,白领19点前下班的人数比例不到四成。综合多个行业的“大排名”,下班时间最晚前10名分别是:可口可乐、奇虎360、宝洁、阿里巴巴、京东、森马服饰、联合利华、百度、华为、腾讯。Top10公司中,互联网公司占据半壁江山,BAT全部上榜,其次为快消行业。
数据虽只是佐证,但的确能说明一些问题。那么,为什么互联网行业加班最严重?
网友推举,做什么最容易加班?
网友在谈到这个问题时由衷感叹:“做IT的命苦啊,搞开发的、做维护的加班最多,制造业这种现象比较少。”网友同样附和,认为做IT维护类工作的人加班最多,因为机器时刻运转,他必然也要整天在维护。虽然目前的技术已经向支持运维自动化的方向发展,但毕竟不是一时能看到成果的。
目前,网友在一家互联网创业公司工作,他分享了自己真实的故事:“最初,平台上线的这段时间几乎每天都在加班。没什么特别的原因,就是因为要赶项目进度。毕竟3个月开发一套平台,还要确保按时上线,这么十几个人去弄还是有难度的。虽然我在其中只是负责内外部资源的协调,但做为一个小团队的“头羊”,临阵脱逃肯定是不可取的。一边看着兄弟们拼死拼活的开发,一边是女儿在电话里殷切的呼唤,心里五味杂陈,冰火两重天。”不过他还是表示,创业公司大多是这样,这种加班还是可以理解的:“一将功成万骨枯,IT从业人员辛勤付出的同时,也在实现着自己的价值,学以致用,我觉得是值得的。”
其实,在网友的观点中可以发现,“IT”、“创业”是加班较为集中的地方,近一年互联网创业潮几乎达到巅峰,而互联网行业更是与开发、运维等密不可分。所以,互联网成为加班比例最高的行业也就不难理解了。除此之外,互联网行业瞬息万变的特性也决定了这一点,想在这个圈子里发展,你必须对突发事件足够敏感,一个事物通过互联网爆火可能仅需要几天甚至是几个小时,你需要不断关注并且与自身结合,借势营销,而营销方案之下,更多的还是开发人员加班加点的开发维护。
加了那么多班,真的有用吗?
提到加班是否有用,网友首先跳出来喊道:“先别说有没有用,不加班绩效考核都不及格!”网友原从事对日工作,他表示:“原来我做对日的时候经常加班,但工作基本没什么技术含量,拼的就是中国廉价的劳动力。这属于整个一个行业原因,和中国人不适应日本客户的严格要求也有关系,中国程序员做事有时候确实有些粗糙。”
网友与他们的观点有出入,他说:“我不常加班,只加过一次一个月的班,原因是人太少,项目也紧。我认为,所有的加班都是不合理安排时间的结果。在别人安排任务时尽量多要时间,以防止可能有变的因素,早点做出来联调测试,发现问题也能及时修改。”
网友也认为加班与效率不高有关,他说:“我们应该多学习快捷的方法,提高工作效率,尽量减少加班。每遇到一个问题就生成一个解决方案,久而久之工作效率也能有很大提升。”
怎样提高效率,减少加班?
对于提升工作效率,网友表示,他以前在Microsoft的领导经常向他强调:“重要的不是你做得多快,而是你对自己工作能力和工作量有合理的估计!也就是,给你一个任务,你要知道如果你用正常工作时间大概会花多久,不是打保票下决心说要攻克难题要不吃不喝不眠不休!只有正确的时间估计,才能让团队的进度合理。”
以前一直做PM,T通过做大大小小的项目积攒了经验,在应对流程性或突发性事件上有足够的准备和承受能力的,他总结了自己对时间管理的心得与大家分享。
想提升工作效率也不难。关键有这样几点:
1、事务的优先级:不管多少事情,总有急、慢之分,先理清楚事情的紧急程度再去动手,磨刀不误砍柴功,别担心会延误,计划得好,事半功倍;
2、事务的本质:不要被纷乱复杂的表面需求所迷惑,要学会看穿表象去究其本质。往往听完业务部门的需求分让人头很大,感觉不知所云,那么,换个人或方式,先确认对方需求点,再根据自己的理解复述,确定后再去套入到某个领域之中;
3、象限法:其实就是一种分类方法,可以按你的理解把事情归纳到不同的象限,再跟据分布情况得出处理优先级。总之得到任务之后,就是不断地按规则拆解、细分。如果你是一个LEADER,当面对大任务量时,可以有条不紊地合理分配工作任务,也不失为一种“得民心”的好途径。
不得不说网友中确是藏龙卧虎,以上对于互联网行业加班的分析已经十分深入。不过,身处互联网行业,无论是大环境影响还是个人原因,加班已经是普遍现象,我们只能在能力范围内尽量调整,提升效率。临近春节,很多人的心可能早早就飞往假期了,不如在这一时刻回望近一年的工作学习,稍作休整。
数据分析咨询请扫描二维码
CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14在当今高速发展的技术环境下,企业正在面临前所未有的机遇和挑战。数字化转型已成为企业保持竞争力和应对市场变化的必由之路。要 ...
2024-11-13爬虫技术在数据分析中扮演着至关重要的角色,其主要作用体现在以下几个方面: 数据收集:爬虫能够自动化地从互联网上抓取大量数 ...
2024-11-13在数据分析中,数据可视化是一种将复杂数据转化为图表、图形或其他可视形式的技术,旨在通过直观的方式帮助人们理解数据的含义与 ...
2024-11-13在现代银行业中,数字化用户行为分析已成为优化产品和服务、提升客户体验和提高业务效率的重要工具。通过全面的数据采集、深入的 ...
2024-11-13在这个数据飞速增长的时代,企业若想在竞争中占据优势,必须充分利用数据分析优化其营销策略。数据不仅有助于理解市场趋势,还可 ...
2024-11-13数据分析行业的就业趋势显示出多个积极的发展方向。随着大数据和人工智能技术的不断进步,数据分析在各行各业中的应用变得越来越 ...
2024-11-13市场数据分析是一门涉及多种技能和工具的学科,对企业在竞争激烈的市场中保持竞争力至关重要。通过数据分析,企业不仅可以了解当 ...
2024-11-13数据分析与数据挖掘是数据科学领域中两个关键的组成部分,它们各有独特的目标、方法和应用场景。尽管它们经常在实际应用中结合使 ...
2024-11-13在如今这个数据驱动的时代,数据分析能力已经成为许多行业的重要技能。无论是为工作需要,还是为了职业转型,掌握数据分析都能够 ...
2024-11-13在如今这个数据驱动的时代,数据分析能力已经成为许多行业的重要技能。无论是为工作需要,还是为了职业转型,掌握数据分析都能够 ...
2024-11-13作为一名业务分析师,你肩负着将业务需求转化为技术解决方案的重任。面试这一角色时,涉及的问题多种多样,涵盖技术技能、分析能 ...
2024-11-13自学数据分析可能看似一项艰巨的任务,尤其在开始时。但是,通过一些策略和方法,你可以系统地学习和掌握数据分析的相关知识和技 ...
2024-11-10Excel是数据分析领域中的一款强大工具,它凭借其灵活的功能和易用的界面,成为了许多数据分析师和从业者的首选。无论是简单的数 ...
2024-11-10在快速发展的商业环境中,数据分析能力已经成为许多行业的核心竞争力。无论是初学者还是经验丰富的专家,搭建一个有效的数据分析 ...
2024-11-10