数据分析-回归分析
回归分析是数据分析中最常用的模型之一,其实用性和普遍性很高,如下分别从线性回归、多元回归、逻辑回归三方面,通过实例分析讲解
解决三个问题
实例1:羽美想预测明天的冰茶销量
实例2:宫野想估算在一个新的地址开店的月销售额
实例3:羽美想推测一下明天的特供蛋糕卖出去的可能性
回归分析的基础流程分六步
羽美想预测明天的冰茶销量。羽美知道冰茶在天热的时候销量好。记录的店中冰茶的销售数据在下表,先画出散点图观察相关性,下图是明显的正相关
可以通过添加趋势线,勾选显示公式和R平方值,轻松就搞定回归方程和精度估计
也可以自己用公式来计算,先求x的平均,y的平均,Sxx,Syy,Syy,通用Se的对a,b的微分=0可以推导出a,b的计算公式
用公式计算R平方看看数据和方程的拟合程度,越接近1拟合程度越高
将上面的数据作为抽样数据,可以估算出总体的分布,用F分布检测总体回归系数,计算出的统计量的概率和0.05比较
对总体回归做估值,在置信度为95%时计算置信区间,计算温度在31度时的置信区间
在置信度为95%时候计算预测区间,计算温度在31度时的预测区间,预测区间的取值范围要比估值区间更宽一些
观察个体的标准化残差,当个体的标准化残差的绝对值大于3时,应该剔除后再进行回归分析
使用Durbin-Watson统计量评估序列自相关程度,如果值在2左右,说明不存在序列自相关
可用尝试多种形式的方程做回归,通过观察散点图判断拟合程度比较好的函数,选择回归后的R平方大的函数
多元回归
宫野想估算在一个新的地址开店的月销售额。宫野知道营业面积越大,距离车站越近,店铺的销售额就越大。各家门店的销售数据如下表,首先画出散点图观察相关性,通过Correl函数计算相关系数,一个是0.89,一个是-0.77都相关显著
用Linest函数计算回归系数,注意Linest计算出的系数是反序的,带入系数就有了回归方程,接下来计算Syy、Se,因为多元回归中R的计算会受到自变量个数的影响,就用修正自由度的R2公式
对总体回归检验回归系数和偏回归系数的检测统计量
其中用到的S11的求解过程,A的转置用“粘贴”的时候勾选“转置”,矩阵相乘法用MMult函数,矩阵求逆用MInverse函数,S11就是对角线上第一行第一列的元素
计算估值区间和预测区间,多元回归采用马氏距离避免欧式距离的量岗的问题
多元回归的自变量可以很多,可以对自变量进行组合,用修正自由度的R平方评估后选择最好的组合。
多元回归将分类变量拆分为n-1个变量来处理,比如:性别有男、女和其他,拆分为性别男,性别女二个变量,用1,表示是,0表示否。
羽美想推测一下明天的特供蛋糕卖出去的可能性。羽美的经验告诉她周三六日客户比较多,好像和温度也有点关系。特供蛋糕的销售数据如下表,首先画出气泡图观察相关性,用气泡是因为点有密集的堆叠,通过Countif辅助列算出气泡的大小,就可以画出气泡吐了,然后用Correl函数计数相关系数。
用规划求解完成逻辑回归系数的计算,因为探测计算中可能会超出销售预测的值过小,从而导致对数释然计算的溢出失败,需要调整销售预测函数=1/(1+EXP(-IF(G2>-700,G2,-700)))做最小值的溢出保护,同时要约束系数变量不为零--AND(NOT($B$24=0),NOT($C$24=0),NOT($D$24=0)),注明:--是转换成整数
下面计算R平方的,这里n1,n0分别是样本中卖出去的个数和没有卖出去的个数,逻辑回归中R平方是越小越显著,可以计算误判率,卖出和预测卖出的相关系数观察模型精确程度。
总体系数的检测,用x2的2自由度检测
检测偏回归系数,用x2的1自由度检测
预测今天是否可以卖出去,带入方程=0.44<0.5估计是卖部出去了
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19在 MySQL 数据库中,查询一张表但是不包含某个字段可以通过以下两种方法实现:使用 SELECT 子句以明确指定想要的字段,或者使 ...
2025-03-17在当今数字化时代,数据成为企业发展的关键驱动力,而用户画像作为数据分析的重要成果,改变了企业理解用户、开展业务的方式。无 ...
2025-03-172025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条 ...
2025-03-14以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-13以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/go ...
2025-03-12以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-11随着数字化转型的加速,企业积累了海量数据,如何从这些数据中挖掘有价值的信息,成为企业提升竞争力的关键。CDA认证考试体系应 ...
2025-03-10推荐学习书籍 《CDA一级教材》在线电子版正式上线CDA网校,为你提供系统、实用、前沿的学习资源,助你轻松迈入数据分析的大门! ...
2025-03-07在数据驱动决策的时代,掌握多样的数据分析方法,就如同拥有了开启宝藏的多把钥匙,能帮助我们从海量数据中挖掘出关键信息,本 ...
2025-03-06