小白学数据分析:留存率问题的分析
最近在做留存分析时,遇到了不少的情况,也经常会有人问我,为什么我的游戏突然次日留存率降了一半。如果留存率是单单作为一个简单的指标的话,那对你价值还是蛮有限的,今天就和大家说说一个case,这是不久前解决掉的问题,相信会帮助不少人。OK,这也将作为留存率分析的第一篇文章,后续在和各位分享。
事件描述
统计发现某三日的次日留存率较之前和之后下降了50%,但是在DAU整体趋势上没有显示的变化。
但是通过查看安装量,用户注册量,发现安装量没有明显的波动,但是用户的注册量骤然增加。下图是系统统计的截图
我们再看一下用户注册量
原因分析
由以上的数据表现来看,初步断定是两种情况:
新开服务器
老玩家刷号
针对第一种情况,我做了以下注册和安装的趋势图
由游戏官网得到了游戏开服的时间表
图中除了1月6日的波峰是由于游戏做了软文投放,刺激了游戏用户增长外,其他的红圆圈(除了1月16日)均是在周末开新服刺激新用户增长的,工作日所开的新服并没有出现波峰,比如1月3日,1月7日,1月9日等等。该游戏在1月18日开设新服,根据刚才的经验,1月18日不会出现较大的波峰,但是从1月18日~20日出现一个较大的波峰。即排除了工作日新开服务器造成的影响。
那么也就是剩下了第二种情况,即老玩家存在刷号的可能性。那接下来,我们需要做两方面的工作:
继续查细分数据,如注册活跃占比,注册安装转化率,玩家单日游戏次数,留存趋势表现数据
继续查找数据有问题期间的运营活动情况,便于问题定位。
这里我们先说第二点,我在该游戏论坛发现了一个活动:
新服开放后,新建帮派在开服后前3日,召集10名玩家加入其帮派,即送帮主大量金币。
由此,基本确定问题出在了此处。不过我们还要从另一层面来看当时所在时期的问题,即从数据层面来看。
单日游戏次数
明显发现18~20日的单日游戏次数增加明显,这是小号增加,刷号的一个征兆,因为刚才我们看到了这个时期的安装量没有增长,只是注册大幅增长。
单次游戏时长
单日游戏时长从一直保持的相对平滑和稳定,但是在18~20日三日,出现了明显的波动,即用户单次游戏的时长不高,即存在大量低级账号。
留存趋势表现
留存率能够我们快速定位问题
是否是某一个新登用户质量的问题;
某一日或几日外部事件导致的留存变化。
如果是用户质量问题,那么该批次用户的新登次日留存率、二日、三日等留存率都会偏低;
如果是外部事件导致的,那么就是不同批次新登用户在某一统计日的留存率会表现的都很低;
我们先来看第一种情况:
次日留存率的前后变化
很明显的发现,次日留存率只是在18~20日三天下滑的很明显,三天之后次日留存率恢复正常水平。
接下来,我们再看看18~20日的留存趋势与21日之后的留存趋势表现
这里我们可以明显的发现,18~20日的留存曲线趋势表现整体上是低于之后的21~23日留存曲线的趋势表现,即18~20日的新增用户质量不高,因为大量是老用户刷新号登录造成数据增长,这样的用户实际上活跃度是有限的,即为了得到利益,使用小号作弊获得奖励的行为,而在数据层面的表现是很难看的。
换句话来说,这是运营活动设计的有问题,间接的影响了各项数据的表现。
至于第二种情况,这里就不说了,后续的文章中,会说到这个问题。
总结
这里就很简单了,留存率的分析绝对不是孤立的,也不是就看看可以了,驾驭留存率分析,能够帮助我们解决很多运营的问题,比如今天讨论的因为运营活动设置的比较事务导致数据的下滑,或者因为外部事件的干扰造成了数据的下滑。单一的留存率指标其实意义不大,但是综合利用其他指标,组合定位、分析问题,就显示出了它的作用。在后的关于留存率的文章中,会继续的来说,如何进行留存率的分析。
数据分析咨询请扫描二维码
数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20统计学专业的就业方向和前景非常广泛且充满机遇。随着大数据、人工智能等技术的快速发展,统计学的重要性进一步凸显,相关人才的 ...
2024-11-20