有时候数字确实需要分享一个美丽的故事分享!
当今社会,数据可视化是至关重要的。没有强大的可视化,几乎不可能在堆积如山的数据中创造或者叙述它的故事。这些故事有助于我们构建策略,并做出明智的商业决策。
R是让数据可视化更加有趣和简单的很好支持。它已经具备了基本的功能,Package提供的外部支持使它成为一个令人开心的工作工具,感谢我们的社区成员。
在所有的包中,ggplot package已经在R中成为了数据可视化的同义词,它可以让你获得更多的控制图,图表和地图,也被称为能创造让人吃惊的图形。我要衷心的感谢Hadley Wickam, 这个成就ggplot2 package的父亲。
在这篇文章中,通过R用户用ggplot package工作中,我已经回答了的一些最常见的问题,所以,下一次当你需要可视化数据的时候,你可以选择下面的任何一个。
注:这篇文章最适合初学者,和中级的具有数据可视化的基本知识的R用户,您可以参考这个完整的数据可视化指南。
现在开始
让我们快速结束可视化热身仪式
数据集:在这篇文章中,我们使用了来自大市场预测的数据集。数据可供下载。
现在我们可以更好的开始了,对变量类进行检查。这将有助于你决定最适合他们制图的类型。
Q1如创建散点图
使用类型:要看连续变量之间的关系时,使用散点图。
让我们快速了解ggplot的代码的结构:
1、 aes-指美学,它包含用于创建图的变量的名称。
2、 geom_point-ggplot提供了很多可以用来代表数据的geoms。因为,在这里我们用散点图,我们用gem_points.
3、 Scale_x_continuous-x 变量是连续的。这个参数是用来表示在x轴改变的信息。
4、 scale_y_continuous-它在Y轴执行与scale_x_continuous相同的任务。
5、 heme_bw –指设置情节的背景。我使用了网格版本。
我们还可以在当前的情节添加一个分类变量(item_type)。检查数据,以熟悉数据集中的可用数据。
我们甚至可以通过创建单独的item_type让分离散点图更好。
在结尾,你需要”缩放”这个图成为一个清晰的视图。放大的版本看起来像这个样子。在这种情况下,参数facet_wrap搞了鬼。它包括了矩形布局中的面。
Q2:如何创建直方图?
使用类型:当我们要绘制一个连续的变量,我们就使用直方图。
Q3:如何创建一个条形图?
使用类型:当我们要绘制一个分类变量或连续变量和分类变量组合时,就使用条形图。
你可以删除coord_flip()参数得到这个垂直条形图。正如你所看到的,我对这个图形尝试了不同的主题。欢迎你用ggplot package来做实验。
为了达到更好的视觉效果,你可以在末端放大这个图形。在这个图中,我分别在x和y轴使用了分类和连续变量。
Q4:如何创建栈条形图?
什么时候使用:它是一个高级版本的条形图。当我们希望可视化组合分类变量时使用。
Q5:如何创建一个箱线图?
使用类型:箱线图被用来绘制分类和连续变量的组合。此图有助于我们分辨数据分类并检测异常。
黑点是异常值。异常检测与排除是成功的数据挖掘的一个重要步骤。
Q6:如何创建一个区域图?
使用类型:区域图是用来显示一个变量或数据集的连续性。这是非常相似的线形图。它是常用的时间序列图。或者,它是用来绘制连续变量和分析的基本趋势。
Q7:如何创建一个热图?
使用类型:热图是用颜色的强度(密度)来显示两三个或多个变量在一个二维图像中的关系。
为了更好的视觉,你可以最后放大这个图表。黑暗的部分表示项目MRP接近50.较亮的部分表示项目的MRP是接近250。
热图也可以产生于图像识别的视觉效果。这可以通过添加一个参数作为插入来完成。
Q8:如何创建一个相关图?
使用类型: 相关图是用来测试数据集的可用变量间的关联程度。创建一个相关图,我们用corrgram package代替ggplot。我意识到用专业软件包创建相关图比ggplot容易多了。
这也很容易解释。颜色越深,变量间的相关性越高。蓝色表示正相关。红色表示负相关。颜色强度表示相关性的大小。
Q9:如何绘制地理地图?
使用类型:地图常被用来可视化某些影响地理位置的一些因素。在R中绘制很容易。
让我们绘制一个参加2016年的ICC世界杯T20的国家。经过研究,我发现今年有16个国家参加。让我们来看看这些国家在世界地图上的位置。
我们会用ggmaps package一起创建这些地图。
这很容易,是不是?我们还可以美化这个地图。如果你不熟悉世界地图,对你来说就很难找出这些国家的名字。让我们用ggmap package的功能设计这个地图。
这样看起来就更好。ggmap package 是与谷歌地图连接的,因此提取详细的地段直接连接。但是我有一个遗憾。如果你仔细看这幅地图,你会发现这个地图是不完整的。西印度群岛没有在这个地图上显示。我试着从多个源中提取数据,但是并没有成功。如果你们中的任何一个能解决这个谜题,请分享你的解决方案吧。
Q10:如何绘制单个命令中的数据集?
我们每个人都在试图在某个时候做到这一步。我们都在寻找一个命令,使用这个命令让我们可以将所有的变量的数据集一次性画出来。这是你的答案。
你可以使用tabplot package 来完成这个伟业。
结尾注释:
我们终于结束一个丰富多彩的旅程!我希望它能让人们开始几次新的丰富多彩的旅程。你可以已经注意到用ggplot 2会容易很多。大多数的代码是重复的,因此你会很快适应它。当你用geoms制作图表的时候要小心,因为这是最主要的设计元素。当我们开始学习这个包时,我问了在不同的节点的所有问题。因此,一篇关于所有问题的文章出现在我的脑海里。
在这篇文章中,我讨论了9种不同的可以用ggplot package绘制的可视化。这些可视化是否能很好的使用取决于提供给它们的变量类型。因此,如果你想画出来,必须要小心变量的类型。
数据分析咨询请扫描二维码
在准备数据分析师面试时,掌握高频考题及其解答是应对面试的关键。为了帮助大家轻松上岸,以下是10个高频考题及其详细解析,外加 ...
2024-12-20互联网数据分析师是一个热门且综合性的职业,他们通过数据挖掘和分析,为企业的业务决策和运营优化提供强有力的支持。尤其在如今 ...
2024-12-20在现代商业环境中,数据分析师是不可或缺的角色。他们的工作不仅仅是对数据进行深入分析,更是协助企业从复杂的数据信息中提炼出 ...
2024-12-20随着大数据时代的到来,数据驱动的决策方式开始受到越来越多企业的青睐。近年来,数据分析在人力资源管理中正在扮演着至关重要的 ...
2024-12-20在数据分析的世界里,表面上的技术操作只是“入门票”,而真正的高手则需要打破一些“看不见的墙”。这些“隐形天花板”限制了数 ...
2024-12-19在数据分析领域,尽管行业前景广阔、岗位需求旺盛,但实际的工作难度却远超很多人的想象。很多新手初入数据分析岗位时,常常被各 ...
2024-12-19入门数据分析,许多人都会感到“难”,但这“难”究竟难在哪儿?对于新手而言,往往不是技术不行,而是思维方式、业务理解和实践 ...
2024-12-19在如今的行业动荡背景下,数据分析师的职业前景虽然面临一些挑战,但也充满了许多新的机会。随着技术的不断发展和多领域需求的提 ...
2024-12-19在信息爆炸的时代,数据分析师如同探险家,在浩瀚的数据海洋中寻觅有价值的宝藏。这不仅需要技术上的过硬实力,还需要一种艺术家 ...
2024-12-19在当今信息化社会,大数据已成为各行各业不可或缺的宝贵资源。大数据专业应运而生,旨在培养具备扎实理论基础和实践能力,能够应 ...
2024-12-19阿里P8、P9失业都找不到工作?是我们孤陋寡闻还是世界真的已经“癫”成这样了? 案例一:本硕都是 985,所学的专业也是当红专业 ...
2024-12-19CDA持证人Louis CDA持证人基本情况 我大学是在一个二线城市的一所普通二本院校读的,专业是旅游管理,非计算机非统计学。毕业之 ...
2024-12-18最近,知乎上有个很火的话题:“一个人为何会陷入社会底层”? 有人说,这个世界上只有一个分水岭,就是“羊水”;还有人说,一 ...
2024-12-18在这个数据驱动的时代,数据分析师的技能需求快速增长。掌握适当的编程语言不仅能增强分析能力,还能帮助分析师从海量数据中提取 ...
2024-12-17在当今信息爆炸的时代,数据分析已经成为许多行业中不可或缺的一部分。想要在这个领域脱颖而出,除了热情和毅力外,你还需要掌握 ...
2024-12-17数据分析,是一项通过科学方法处理数据以获取洞察并支持决策的艺术。无论是在商业环境中提升业绩,还是在科研领域推动创新,数据 ...
2024-12-17在数据分析领域,图表是我们表达数据故事的重要工具。它们不仅让数据变得更加直观,也帮助我们更好地理解数据中的趋势和模式。相 ...
2024-12-16在当今社会,我们身处着一个飞速发展、变化迅猛的时代。不同行业在科技进步、市场需求和政策支持的推动下蓬勃发展,呈现出令人瞩 ...
2024-12-16在现代商业世界中,数据分析师扮演着至关重要的角色。他们通过解析海量数据,为企业战略决策提供有力支持。要有效完成这项任务, ...
2024-12-16在当今数据爆炸的时代,数据分析师是组织中不可或缺的导航者。他们通过从大量数据中提取可操作的洞察力,帮助企业在竞争激烈的市 ...
2024-12-16