热线电话:13121318867

登录
首页精彩阅读当R用户用ggplot2 package时,经常问的10个问题
当R用户用ggplot2 package时,经常问的10个问题
2016-04-03
收藏


有时候数字确实需要分享一个美丽的故事分享!

当今社会,数据可视化是至关重要的。没有强大的可视化,几乎不可能在堆积如山的数据中创造或者叙述它的故事。这些故事有助于我们构建策略,并做出明智的商业决策。

R是让数据可视化更加有趣和简单的很好支持。它已经具备了基本的功能,Package提供的外部支持使它成为一个令人开心的工作工具,感谢我们的社区成员。

在所有的包中,ggplot package已经在R中成为了数据可视化的同义词,它可以让你获得更多的控制图,图表和地图,也被称为能创造让人吃惊的图形。我要衷心的感谢Hadley Wickam, 这个成就ggplot2 package的父亲。

在这篇文章中,通过R用户用ggplot package工作中,我已经回答了的一些最常见的问题,所以,下一次当你需要可视化数据的时候,你可以选择下面的任何一个。

注:这篇文章最适合初学者,和中级的具有数据可视化的基本知识的R用户,您可以参考这个完整的数据可视化指南。


可视化 指南


现在开始

让我们快速结束可视化热身仪式

数据集:在这篇文章中,我们使用了来自大市场预测的数据集。数据可供下载。
代码代码2

现在我们可以更好的开始了,对变量类进行检查。这将有助于你决定最适合他们制图的类型。

Q1如创建散点图

使用类型:要看连续变量之间的关系时,使用散点图
<a href='/map/sandiantu/' style='color:#000;font-size:inherit;'>散点图</a>代码<a href='/map/sandiantu/' style='color:#000;font-size:inherit;'>散点图</a>


让我们快速了解ggplot的代码的结构:

1、 aes-指美学,它包含用于创建图的变量的名称。

2、 geom_point-ggplot提供了很多可以用来代表数据的geoms。因为,在这里我们用散点图,我们用gem_points.

3、 Scale_x_continuous-x 变量是连续的。这个参数是用来表示在x轴改变的信息。

4、 scale_y_continuous-它在Y轴执行与scale_x_continuous相同的任务。

5、 heme_bw –指设置情节的背景。我使用了网格版本。

我们还可以在当前的情节添加一个分类变量(item_type)。检查数据,以熟悉数据集中的可用数据。
分类变量分类变量2

我们甚至可以通过创建单独的item_type让分离散点图更好。


单独的item_type单独的item_type2


在结尾,你需要”缩放”这个图成为一个清晰的视图。放大的版本看起来像这个样子。在这种情况下,参数facet_wrap搞了鬼。它包括了矩形布局中的面。

Q2:如何创建直方图?

使用类型:当我们要绘制一个连续的变量,我们就使用直方图<a href='/map/zhifangtu/' style='color:#000;font-size:inherit;'>直方图</a>代码直方土



Q3:如何创建一个条形图?

使用类型:当我们要绘制一个分类变量或连续变量和分类变量组合时,就使用条形图


<a href='/map/tiaoxingtu/' style='color:#000;font-size:inherit;'>条形图</a>代码<a href='/map/tiaoxingtu/' style='color:#000;font-size:inherit;'>条形图</a>


你可以删除coord_flip()参数得到这个垂直条形图。正如你所看到的,我对这个图形尝试了不同的主题。欢迎你用ggplot package来做实验。


ggplot package代码


为了达到更好的视觉效果,你可以在末端放大这个图形。在这个图中,我分别在x和y轴使用了分类和连续变量。

Q4:如何创建栈条形图?

什么时候使用:它是一个高级版本的条形图。当我们希望可视化组合分类变量时使用。
栈<a href='/map/tiaoxingtu/' style='color:#000;font-size:inherit;'>条形图</a>栈<a href='/map/tiaoxingtu/' style='color:#000;font-size:inherit;'>条形图</a>


Q5:如何创建一个箱线图?

使用类型:箱线图被用来绘制分类和连续变量的组合。此图有助于我们分辨数据分类并检测异常。

黑点是异常值。异常检测与排除是成功的数据挖掘的一个重要步骤。
箱线图箱线图


Q6:如何创建一个区域图?

使用类型:区域图是用来显示一个变量或数据集的连续性。这是非常相似的线形图。它是常用的时间序列图。或者,它是用来绘制连续变量和分析的基本趋势。


区域图区域图

Q7:如何创建一个热图?

使用类型:热图是用颜色的强度(密度)来显示两三个或多个变量在一个二维图像中的关系。

热图热图

为了更好的视觉,你可以最后放大这个图表。黑暗的部分表示项目MRP接近50.较亮的部分表示项目的MRP是接近250。

热图也可以产生于图像识别的视觉效果。这可以通过添加一个参数作为插入来完成。
热图2热图2大

Q8:如何创建一个相关图?

使用类型: 相关图是用来测试数据集的可用变量间的关联程度。创建一个相关图,我们用corrgram package代替ggplot。我意识到用专业软件包创建相关图比ggplot容易多了。
相关图相关图

这也很容易解释。颜色越深,变量间的相关性越高。蓝色表示正相关。红色表示负相关。颜色强度表示相关性的大小。

Q9:如何绘制地理地图?

使用类型:地图常被用来可视化某些影响地理位置的一些因素。在R中绘制很容易。

让我们绘制一个参加2016年的ICC世界杯T20的国家。经过研究,我发现今年有16个国家参加。让我们来看看这些国家在世界地图上的位置。

我们会用ggmaps package一起创建这些地图。
创建地图1创建地图2创建地图3


这很容易,是不是?我们还可以美化这个地图。如果你不熟悉世界地图,对你来说就很难找出这些国家的名字。让我们用ggmap package的功能设计这个地图。


设计地图

这样看起来就更好。ggmap package 是与谷歌地图连接的,因此提取详细的地段直接连接。但是我有一个遗憾。如果你仔细看这幅地图,你会发现这个地图是不完整的。西印度群岛没有在这个地图上显示。我试着从多个源中提取数据,但是并没有成功。如果你们中的任何一个能解决这个谜题,请分享你的解决方案吧。

Q10:如何绘制单个命令中的数据集?

我们每个人都在试图在某个时候做到这一步。我们都在寻找一个命令,使用这个命令让我们可以将所有的变量的数据集一次性画出来。这是你的答案。

你可以使用tabplot package 来完成这个伟业。
绘制单个命令中的数据集


结尾注释:

我们终于结束一个丰富多彩的旅程!我希望它能让人们开始几次新的丰富多彩的旅程。你可以已经注意到用ggplot 2会容易很多。大多数的代码是重复的,因此你会很快适应它。当你用geoms制作图表的时候要小心,因为这是最主要的设计元素。当我们开始学习这个包时,我问了在不同的节点的所有问题。因此,一篇关于所有问题的文章出现在我的脑海里。

在这篇文章中,我讨论了9种不同的可以用ggplot package绘制的可视化。这些可视化是否能很好的使用取决于提供给它们的变量类型。因此,如果你想画出来,必须要小心变量的类型。

数据分析咨询请扫描二维码

最新资讯
更多
客服在线
立即咨询