懂你的推荐算法,推荐逻辑是怎样的?
作为一个喜欢思考人生的美男子,我时常感慨,现在这个年代,人们上网获取信息的成本真的好低。智能手机,人手一台,打开3G就能上网,百度一搜,什 么都有。当然百度上搜出来的大多数可能并不是你想要的,但这并不妨碍上面的论点成立。也正是因为成本太低,人们反而不愿意主动取获取信息,于是各种各样的 推荐系统有了大展身手的机会。
推荐在生活中是一个再平常不过的事情,你失业了,有人会给你推荐工作,你失恋了,有人会给你推荐姑娘。但是在我们这个机器远没有人类聪明的时代,这 些事情要是交给机器去做,你就得设计出一套机器能理解的算法出来,这就是所谓的推荐算法。大家看到算法两个字不要慌,以为我又要搬一个大东西出来吓唬人。 你可以把算法看做现实生活中的办事流程,它规定了你第一步干什么,第二步干什么,只要你按它说的做,就可以把事情办好。举个例子,你现在要做一个电影推荐 APP,我们来看下整个过程是怎样的。
在推荐算法中,我们第一步要有一大堆要推荐的东西。也就是说,你的电影首先要足够多,才能满足不同用户的需求。算法再精准,最后发现推导出来的结 果,在你的数据库中并没有,就悲剧了。第二步是要有用户的行为数据。这个也是越多越详细越好。这时候你要把看了哪部电影,看完没有,评价怎么样悄悄的记下 来,上传到后台服务器。经过长期的积累,这些数据将为你以后的精准推荐奠定基础。
有了上面的数据基础,我们就可以进入正题了。推荐算法有不少,我们今天介绍一种最基本的叫做协同过滤算法。它的核心思想是物以类聚,人以群分。具体 可以分为基于用户的协同过滤算法和基于物品的协同过滤算法。我一直觉得专业领域起这种高大上的名字,是用来过滤智商的,因为很多人看到这里就不打算往下看 了,哈哈。
先看第一种基于用户的协同过滤。可以简单理解为我虽然不认识你,但是我通过查看你的朋友圈都是些什么人,根据人以群分的道理,他们喜欢的很可能就是你喜欢的。
假设从历史数据上来看,用户A喜欢《捉妖记》、《大圣归来》,用户B喜欢《栀子花开》、《小时代》,用户C喜欢《捉妖记》。那我们就可以简单认为 AC二人口味相似,可以归到一个朋友圈里,C极有可能也喜欢A所喜欢的《大圣归来》。这是最简单的情况,实际上仅仅用喜不喜欢来评价感兴趣程度是远远不够 的,用户不可能看完还填个调查表选择yes or no,但是会通过一些其他行为比如影评、是否收藏来反应他们的喜欢程度。机器只能理解量化的东西,所以在算法中,这些行为会转化成相应的分数。比如完整看 完的,给3分;看完还给了正面评价的,给5分;看到一半就怒删的,给负10分。这样每个用户都会有一个电影评分表,在计算两个用户相似度的时候,把这些数 据代入下面这种专门计算相似度的公式,就能得到二人口味的相似程度。
现在我们要给用户D推荐电影,分别计算AD、BD、CD的相似度,找到跟D最相似的用户,然后把他喜欢的,都推荐给D,就行了。(下面的公式叫做余弦相似度公式,通过计算n维空间中两个向量的夹角余弦,来表示相似度,大家感受一下就好,感兴趣的可以去问google。)
第二种是基于物品的协同过滤。基本思想是假设甲乙是相似的物品,那么喜欢甲的人,很可能也喜欢乙。还是上面的例子,现在假设用户E喜欢《栀子花开》 和《小时代》,那我们可以推导出,喜欢《栀子花开》的用户(B和E)都喜欢《小时代》,那基本可以确定两部电影是相似的,下回来个用户F,他喜欢《栀子花 开》,那我顺便就把《小时代》推荐给他,他可能比较容易接受。
大家可能要问,我的APP第一天上线,没有这些所谓的用户行为数据怎么推荐啊。这就是推荐算法面临的冷启动问题。这时候可以用基于内容的算法了。你 可以事先把所有电影归个类,战争片归到一起,喜剧片归到一起,动画片归到一起。用户H看了一部喜剧片,你就把所有喜剧片推荐给他。显而易见,这种算法简单 粗暴,当然命中率也最低。
真正的推荐系统会综合运用各种算法,加之机器学习和人工调优的不断改进,所以是非常复杂的。
数据分析咨询请扫描二维码
CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14在当今高速发展的技术环境下,企业正在面临前所未有的机遇和挑战。数字化转型已成为企业保持竞争力和应对市场变化的必由之路。要 ...
2024-11-13爬虫技术在数据分析中扮演着至关重要的角色,其主要作用体现在以下几个方面: 数据收集:爬虫能够自动化地从互联网上抓取大量数 ...
2024-11-13在数据分析中,数据可视化是一种将复杂数据转化为图表、图形或其他可视形式的技术,旨在通过直观的方式帮助人们理解数据的含义与 ...
2024-11-13在现代银行业中,数字化用户行为分析已成为优化产品和服务、提升客户体验和提高业务效率的重要工具。通过全面的数据采集、深入的 ...
2024-11-13在这个数据飞速增长的时代,企业若想在竞争中占据优势,必须充分利用数据分析优化其营销策略。数据不仅有助于理解市场趋势,还可 ...
2024-11-13数据分析行业的就业趋势显示出多个积极的发展方向。随着大数据和人工智能技术的不断进步,数据分析在各行各业中的应用变得越来越 ...
2024-11-13市场数据分析是一门涉及多种技能和工具的学科,对企业在竞争激烈的市场中保持竞争力至关重要。通过数据分析,企业不仅可以了解当 ...
2024-11-13数据分析与数据挖掘是数据科学领域中两个关键的组成部分,它们各有独特的目标、方法和应用场景。尽管它们经常在实际应用中结合使 ...
2024-11-13在如今这个数据驱动的时代,数据分析能力已经成为许多行业的重要技能。无论是为工作需要,还是为了职业转型,掌握数据分析都能够 ...
2024-11-13在如今这个数据驱动的时代,数据分析能力已经成为许多行业的重要技能。无论是为工作需要,还是为了职业转型,掌握数据分析都能够 ...
2024-11-13作为一名业务分析师,你肩负着将业务需求转化为技术解决方案的重任。面试这一角色时,涉及的问题多种多样,涵盖技术技能、分析能 ...
2024-11-13自学数据分析可能看似一项艰巨的任务,尤其在开始时。但是,通过一些策略和方法,你可以系统地学习和掌握数据分析的相关知识和技 ...
2024-11-10Excel是数据分析领域中的一款强大工具,它凭借其灵活的功能和易用的界面,成为了许多数据分析师和从业者的首选。无论是简单的数 ...
2024-11-10在快速发展的商业环境中,数据分析能力已经成为许多行业的核心竞争力。无论是初学者还是经验丰富的专家,搭建一个有效的数据分析 ...
2024-11-10