大数据让我们前所未有的方式和观点,看到究竟什么有用、什么没用,以前不可能观察到的种种学习阻碍,现在有办法一一化解,大幅改善学生的学习成效,颠覆传 统教学模式,造福更多学子。课程可以依据学生个人的需求做调整,真正做到因材施教,因为教师可以透过学生在线上学习时不经意的行为来判断成效、调整教学内 容和顺序,以及多次复习会造成学习瓶颈的困难观念,甚至即时因应学生的反应而出招等等。教师的工作不会被教学网路和影片取代,而会变得更有效益、也更有 趣,因为能够更专注针对学生作个人化的指导。
他们也认利用大数据分析,学校领导者和政府决策官员,也能用更低的成本提供更多教育机会,这些正是减少社会贫富差距、让社经阶层流动的重要因素;社会大众 也能够知道「学习」应当是怎么一回事,打破教育主管机关和学校的垄断地位,从而让教育的本质和体制彻底翻转。他们主张,大数据时代正是不断学习的时代、翻 转教育的时代!
不过大数据的应用是双面刃,我们可能会把相关性误判为因果,而且如果学生的个资无法被保护,其旧学习歷程被曝光,可是会影响日后的升学与就业。关于这方 面,《大数据:教育篇》引用了《大数据》的许多观念和案例,例如误将相关性当因果以及个资保护等等,所以建议也要去读《大数据》这本书。
不过,尽信书不如无书,作者在西方遇到的问题,和我们在东亚遇到的,有很大的差异。最大的差异有两点。
一个大差异,在一张很多网友在脸书分享的图表清楚表达出来:图裡有两条轴线,第一条轴线为「欧美人才养成」,而第二条则是「台湾人才养成」,轴线将学习生 涯分成「学前」、「小学」、「国中」、「高中」以及「大学」等五个阶段。「欧美人才养成」各阶段的学习目标相当明确并且不同,学前做好生活管理、小学探索 环境、国中要开始找寻自己的梦想、高中则要面对生涯抉择,而到了大学就要开始培养实务能力。
台湾人才培养的轴线,从「学前」一直到「高中」生涯,全是「读书考试」,一直到「大学」时期,才要将「生活管理」、「探索环境」、「找寻梦想」、「生涯抉择」以及「培养实务能力」一次统统完成,其中当然还少不了「读书考试」。
欧美的教育偏向素质教育,相对于偏重考试的应试教育而言,较为注重体育、艺术能力和多元智能的培养,而真正的素质教育,目的在于让学生能发挥个人潜能,各 展所长,并培养良好的品格,并不局限于学术上的才能。台湾的教育能够筛选出很会考试(甚至还不见得会「读书」哦)的学生,连公务系统都极度依赖考试,虽然 有好些公家工作几乎不需要考试的技能。可是因为考试实在太浮滥,使得疲于奔命的教师能好好用心出题的时间都被严重压缩,连有没有认认真真地好好考考学生各 方面的学术能力都成问题,更甭提学术能力也非社会所需的全部。
另外一个差异是,台湾的教育太过注重标準答案,可是严重扼杀学生的创意。但是欧美的教育很注重个人的启发,所以顶尖的人才在欧美的教育环境,往往可以更容 易发挥出他们的潜力,表现出他们充沛的创造力。可是他们的对素质一般的学生,反正做得不见得比台湾好。台湾的教育环境,让学生拚命练习考试、练习考试再练 习考试,让学生的程度比起欧美整齐的多。以我和朋友们在美国唸博班当助教的经验来看,台湾学生的程度差异在一个班中,算是比较整齐的,成绩优劣几乎凭个人 努力付出多寡。可是在美国大学,尤其是公立学校,大部分的学生,在数理方面真的很不行!
举个例子来说,我们常常看到学生在实验数据中,他们尝试要把上吨的盐溶在小烧杯裡,或者把实验桌上的小铅球射上火星,因为连单位都搞错了Orz 有位老师在普通生物学考题上问学生什么是pH值,居然有四分之一的学生选择「它不存在」;还有老师指出,大四的学生,居然有两成回答果蝇的基因数量是小于 一,另外两成写无穷大(正确数目大约是一万多),他说那四成学生基本上是「完全的废物」;还有很多搞笑的事,真是罄竹难书。面对这些学生,教授们的态度往 往是「放弃」,可是大数据或许能让这情势反转。
台湾的教育环境,往往比欧美更善待中上程度的学生,用严酷的练习考试来磨练他们的能力,可是却严重地忽略了顶尖人材的教育,而且也几乎完全没有为培养社会 各界的领袖所準备。台湾的大学,就算连顶尖的台大和清大,大致上都还是停留在训练优异的干部为主,教授的教学方式和内容,和其他大部分的大学几乎没差太 多,顶多深度有一些差异而已。可是,就拿美国来说,顶尖大学的目标是在培养顶尖的领袖!一流大学的目标是在培养社会各界菁英、二流大学的是在培养优异的干 部、叁流大学的是在培养良好的基层员工等等。所以,很不幸的,台湾的大学可能在培养优异的干部上很称职,可是要成为社会各界菁英,就只能靠学生自己的努力 和见识,领袖的话就算了。
要培养出优异的干部,大数据的应用应该有其优势,可是社会菁英和领袖的培养,大数据或许无用武之地,因为大据数无法告诉你过去未曾发生的事情,也无法预测 和产生出创新,因此对于台湾的教育,大数据可以提高学生的学业,可是五育的训练,以及领袖和社会菁英的培养,我们可能先不要去思考什么大数据之类的,先从 整体教育环境下手才比较实际。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31本人基本情况: 学校及专业:厦门大学经济学院应用统计 实习经历:快手数据分析、字节数据分析、百度数据分析 Offer情况:北京 ...
2025-01-3001专家简介 徐杨老师,CDA数据科学研究院教研副总监,主要负责CDA认证项目以及机器学习/人工智能类课程的研发与授课,负责过中 ...
2025-01-29持证人简介 郭畅,CDA数据分析师二级持证人,安徽大学毕业,目前就职于徽商银行总行大数据部,两年工作经验,主要参与两项跨部 ...
2025-01-282025年刚开启,知乎上就出现了一个热帖: 2024年突然出现的经济下行,使各行各业都感觉到压力山大。有人说,大环境越来越不好了 ...
2025-01-27在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-01-26数据指标体系 “数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而 ...
2025-01-26在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-25俗话说的好“文不如表,表不如图”,图的信息传达效率很高,是数据汇报、数据展示的重要手段。好的数据展示不仅需要有图,还要选 ...
2025-01-24数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪70 ...
2025-01-24又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-23“用户旅程分析”概念 用户旅程图又叫做用户体验地图,它是用于描述用户在与产品或服务互动的过程中所经历的各个阶段、触点和情 ...
2025-01-22在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-22在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07