如果万物数连,那么建筑应当如何与大数据结合?
9月29日更新一段刚刚在网上看到的趣段子:
尊敬的万达用户您好,您于2014年9月28日09时时购买了一张万达影院的《黄金时代》电影票。我们于刚刚售出您邻座的票,是一个女生。她的电话号码是:185xxxxxxxx,根据她的购票纪录来看,她近半年都是单身,她观看的电影类型和您的匹配度为85%。她表示愿意和您交个朋友,请及时联系她!@王思聪 申请开通。
万达腾讯百度的合作很可能发展为大数据与商业建筑结合的典型案例。
像万达的商业广场、院线、百货甚至是停车场都可以挖掘大数据的价值。
引用大数据话题下某个精华回答里一段描述大数据挖掘商业价值的主要方式:
1、客户群体细分,然后为每个群体量定制特别的服务。
2、模拟现实环境,发掘新的需求同时提高投资的回报率。
3、加强部门联系,提高整条管理链条和产业链条的效率。
4、降低服务成本,发现隐藏线索进行产品和服务的创新。
王健林说不久后当你开车进入万达的停车场不必停车取卡,手机可查看空车位,不用兜圈子找,离开万达时也不用排长队付钱通行,可以空中缴费。
这就是个最简单的例子,为停车的消费者提供了便利,同时提高了停车场的运营效率。
万达广场中的商娱内容丰富,根据你的个人信息,甚至是同行的伙伴数量、关系,可以有多种组合推荐给你,譬如培养手机预订——即时消费的这类消费群体,有了明确需求的消费者,商家能更好地协调资源与提高效率,并节约双方的时间、费用成本。
我再举个脑洞小开的栗子
某天进入万达,万达发现我与一位异性伙伴同行,分析我的微信数据发现我是已婚人士,同伴并非法定伴侣,而是通过微信摇一摇认识,而且在聊天记录中有诸多敏感词和图片,判断出我是在yp,于是推送相关购物用餐看电影开房服务,同时万达实时提醒我避让附近亲属、夫妻共同好友。万达通过分析所有聊天记录、贴吧记录、百度地图住址、百度知道回答记录,给我贴上逗逼、器大活好、前戏60分钟、喜爱对象为aoi这样的童颜x乳、职业为给中小学生做假期作业的各种隐形标签,满足这方面需求的软妹下次在摇一摇或者搜索附近的人里可以优先看到我。同时万达友情提醒本周yp次数过多,推荐我用餐到某某海鲜自助吃生蚝,酒店可预订万哎可放在床头,付费可提供扫黄提前通知服务……当然这一连串服务的前提是你得成为万达x钻用户,包年n软妹币,如果你愿意升级成更高等级的y钻,还有“即时预约-即时消费”的摇一摇服务,附赠著名的万达爆米花,如果你愿意升级成更牛X等级的z钻,还可以查看附近软妹的特征、好评度——“有n个人与ta交配过,其中有您的好友a,b,c,好评度4.8分,最近一个月的成交记录有……主要标签有 童颜、x乳、八分、OL……是否收藏?”
毫无疑问,有了大数据的结合,在改善用户体验、增加用户忠诚度、提高用户活跃度、降低商业建筑运营成本提高效率等方面,万达腾讯百度可以做得更好。
另,看到有答案提及BIM,私以为,大数据与建筑生命周期管理(BLM)的结合更值得探讨。
以下内容来自知乎网友袁牧:
一、其实大数据古来已有。
广义的建筑行业,包括国土、城市、乡村、风景区、建筑、结构水暖电,各国家和很多行业早就在搞大数据,只不过很多人不觉得这是大数据的地基部分而已,并且这不是商业互联网的大数据。
如果目前www网站、社交网络、可穿戴的那些数据算大数据的话,那么支撑现代人类社会运行的真正巨大的系统,那就是 巨数据 了
互联网是近几十年发明、近年来走入日常生活的东西,物联网还是未来计划中的东西,但这些东西背后的数据和对数据的利用,并不是在商业互联网热潮之后的才产生的。
打个比方,IT是信息技术的简称,Information Technology,互联网为载体的it行业是新行业,但人类从岩画开始、通过石刻、竹简、活字印刷、打字机为手段的IT信息技术已经有几千年了,其规模和深度绝对不是冰山一角所能代表的。
很多大数据领域其实存在已久,比如亚历山大图书馆、各种神秘的档案馆乃至龙渊阁 –搜狗百科这种存在,都是非电子化的大数据常识。到了现代,其实电子化的传统大数据也不少,只不过普通人不会知道而已。
我们一般说建筑学会包括 规划、建筑和景观,而说普通建筑的时候会专门说“单体建筑”。因为建筑行业天然是相互联系、观照全局的,因而无法局限于目前这一小部分大数据的,涉及到国计民生的大基础建设,必然要涉及更大的那部分大数据。
题主说的大数据,应该是以民用互联网为主、商业公司可以涉足的部分大数据。
2 我所知道的,目前最大的数据是GIS地理信息系统_百度百科
人家GIS行业这样介绍自己的起源:
15,000年前,在拉斯考克(Lascaux)附近的洞穴墙壁上,法国的Cro Magnon猎人画下了他们所捕猎动物的图案。与这些动物图画相关的是一些描述迁移路线和轨迹线条和符号。这些早期记录符合了现代地理资讯系统的二元素结构:一个图形文件对应一个属性数据库。
怒,掀桌。。。但也说明,人类自古对全局性的数据有强烈的需求,当然首先包括(天文+地理+人类活动)x历史=宇宙中一切的信息的数据,然后加以分析和利用。
但这一切,确实到了互联网大发展的今天,才算是具备全盘电子化可能性了。
有科学家认为:我们所身处的宇宙其实是一幅全息影像 《自然》网站评出2013年最受欢迎十大故事超好看的文奇的科幻小说《天渊》也把高层次生命放在数据库里。这样的话,其实宇宙本身就是最大的数据,我们只是要找到数据库的接口而已。。。。呵呵
简单的说,GIS的目标是要把整个地球的空间信息都放进去,包括土地的状况、地形、植被、水文、气候,然后就是城市、道路、建筑、设施、人口等等。理论上一切地球上的物体包括它们的信息,都应该被记录在GIS里,并且可以进行相应的统计分析和数据挖掘利用。所以谷歌是一家值得尊敬的公司,因为他们的路数就是把地球整个数字化、存储起来,这是非常大的格局,而且他们也弄到了大量的活人本身的信息,这是传统GIS不包括的细致内容。甚至火星和月球他们都插手,顺便卖卖数据可广告挣点钱那都是小意思。
我最喜爱的程序:谷歌地球
注意看,人家的背景是银河系哦。。。谷歌地球可以看气候、星空、月球、火星、还有历史图像!还有开放式的地图信息库! @马伯庸最喜爱的将古代史空间化的工作不但可以在这里做,还可以发布呢!只不过因为某些脑子被夹的人,你得科学上网才能看到,草。
一般的大数据往往只是单纯的文字或者二维的图像,但是GIS所代表的的是建筑学所关注的空间的信息,当数据被放置在三维空间+时间的格式里,其效果是非常不同的。
我认为既然人类生活在三维空间里,那一切大数据都应跟空间结合。
3 GIS在城市规划特别是国土规划,是非常重要的,因为国家非常巨大,宏观规划工作必然依赖宏观的技术手段,一般居住区规划跑跑现场,丈量土地这种方式是没办法用的。
因此,对GIS形成支撑的,首先就有GPS和RS。地理信息系统(GIS)与全球定位系统(GPS)、遥感系统(RS)合称3S系统。
题主肯定不是做规划的,不然不会问怎么用,规划行业天天都在谈大数据。
实际上现在每天大家看的天气预报,那也是来自于一个大数据系统,气象卫星系统,而且是全球联网信息共享的,我也是有一次做气象台的项目,才知道原来人家的大数据真是走在前面。气象系统是可以整合进GIS的,如果他们愿意。
对于政府层面,土地执法、农业林业灾害遥感、规划建设控制、房屋产权管理、宏观经济数据统计监测,这些都是很常规的应用了。
对于单体建筑这边,肯定是可以有所作为的,比如GIS衍生出来的定位服务(LBS)很热火,包括导航和地图服务这些,这些都是跟建筑行业关系很密切的。起码室内导航那是需要建筑弱电专业布置相应设备的,以后建筑电气肯定要大幅强化智能化、移动互联网这些内容,所谓智能家居只不过是非常小的一部分应用,因为只是数据而非大数据。
4 至于物联网,未来应该是大数据的一个大块,其实以前也有类似的工作,就是铺设传感器和控制器体系嘛,各种摄像头监控、各行业的自动控制,比如铁路调度系统就是非常成熟的物联网的一种。更重要的其实是股市和期货系统,也是全球联网的重要经济大数据,恐怕很多人不认为是物联网,但实际上企业通过审计进入股市信息,大宗商品通过期货信息进入交易系统,这都是大规模经济物品和数据库的映射,只不过中间经过了人工的录入和整理。以后或许可以直接通过电子条码自动生成相关数据呢,审计人员不用去盘点,股市自动告知库存、销量,多牛x。
物联网信息也很巨大,与Gis的区别主要是侧重运动和生产消耗的类的物体。这些数据已经在发挥作用,但是要把普通人和普通物品联网这还比较远。
5 应该说当前的大数据真正革命性的、过去没有的,应该是移动互联网,也就是手机啦,以及各种可穿戴,所有人员的运动、状态、身体参数这些全都容纳进数据库,这是手机普及前所不能想象的部分。目前我们说大数据,特别是商业互联网说的大数据,主要是指这一部分个人信息吧。
现在大量的移动数据掌握在三家公司手里,然后互联网上的数据也在这三家以及几家互联网巨头手里,另外一些大行业比如银行、社保、医疗、教育、航空铁路也有比较完善的人的数据。这些大数据要怎么用,蛮难的,因为历史上都是纸质档案。这几年光数字化就累死人了,海量数据要使用还得慢慢探索。
但建筑主要操作的还是实体建筑物,所以其实更热衷于前面说的那些GIS、物联网这些大数据,而人的大数据还很新鲜,不知道怎么挖掘利用。
6 基本上,以上这些都是早已开始、正在火热建设、前景巨大的大数据系统,并且都是国家机器和国际联合组织层面的工作,跟行业息息相关。但是对于普通民众和商业公司以及从业人员个人,才算是刚刚开始敞开应用。具体能做什么,其实要看老大哥愿意开放什么给你。
建筑应当如何用大数据,我想,大数据能做什么,关键看你想做什么,然后看你能拿到什么数据。
一、这里说的是大数据,不是小数据,那首先是宏观的利用。
1 对于规划行业,利用GIs和人口、交通、产业供求、这些大数据做规划,已经是不言而喻的,特别是产业规划。这里不多说。
2 对于单体建筑行业,首先是房地产,比较迫切的是拿到市场需求、户型类型这些核心数据,目前行业里依靠专业咨询公司去搞数据、搞调查、搞分析,以后应该也需要通过大数据来解决,比如城市的各种人口构成、位置流动、收入支出、家庭需求等等,可以保证楼盘的选点、户型切合市场需求。只不过目前搞数据很贵很难。
像住宅区的停车位配比,绝对是适宜大数据决策的。要知道现在开发商跟规划局战停车率,真是死去活来啊。。。动则上亿的投资呢。。
3 至于公共类建筑,也可以通过大数据获取决策信息,比如机场车站、酒店商业、文化博览建筑,到底有多少需求,放在哪里合适,都可以参照人们流动规律、消费规律觉得。但根据我的经验,其实不是老大哥不给你用,是大家都不知道怎么用。比如铁路算是比较数据化的,车站建设基本上就是估算xx万客流,大概定个等级,然后放大xx倍直接干,面积精度是万平方米,地方政府还会要求尽量大!尽量大!好吧。。。于是有的车站空荡荡,有的挤得要死。学校建设也是类似。至于商业区、酒店区规划,那基本是按有多少地卖,尽量多卖。而工业地产的瓶颈则在于你能不能招来企业,而不是你怎么配置建筑。
过去我们的建筑设计,其实是有数据控制的,这就是规范指标,主要包括建筑行业规范,和发改委的经济指标规定。这些指标来自于过去的数据统计,可以说也是一种大数据,而且是典型的统计上的大数据。这就是我前面为什么要追述历史上的大数据的原因。
现在有新的数据,但数据如何控制设计,其实是一直以来有稳定逻辑的。这个层面只是需要更新数据来源和准确性,利用方式不变。
目前的建筑物设计,对数据利用还比较粗糙,各方面也还没有想好怎么发掘和利用数据,但未来的话,起码医疗、交通、教育这些大项目行业是可以用大数据决策选点、容量控制、服务类型控制的,但需要有关方面数据开放,并且寻找比较成熟可靠的算法。
二、然后说说更不靠谱的微观建筑设计。
大数据和过去的统计数据的区别,在于其全样本、动态更新,而不是过去只有总数和平均数。这样使得所谓的私人订制成为可能。
1 首先是外观,如果我们能够拿到每个人对不同建筑的互动信息,也许我们有可能判断什么样的建筑风格更受欢迎,更吸引买房者或者逛街购物者,建筑风格选型就从拍脑袋到了有依据。我想zara这样的服装企业应该已经做到了,传统数据无法确定的审美问题,可以通过大数据来判定,提高受欢迎程度。风景区、旅游度假产品也会依赖这种数据,利用旅游社交舆情、交通、收入、放假信息,决定做何种外观的景点。
2 建筑性能。如果有大量的传感器追踪数据,外墙的保温、通风、节能这些设计能够有很好的改善。目前节能计算方法还是比较粗糙的,如果能掌握大量已有建筑的能耗和物理量信息,再做好新建筑的感应控制,起码在暖通空调设计上会有很大改善。现在按城市的气候指标可以精细到按微环境控制设计,并且可以改善运营。这在商业建筑里能节省很大一块能耗。
类似的,雨水污水的排水设计,也可以利用大数据进行改善。目前城市防雨指标明显偏低,按几年一遇几年一遇这样的指标算法也是在是比较落后,当然会造成各种水漫金山,立交桥下面还淹死人。应当用雨水检测系统配合城市管网信息,准确控制各建筑、道路、区域的排水设施。
还有就是音乐厅的设计,如果做个可控墙顶面,就可以像播放器调整音效一样,根据观众口味和音乐特点,调整音乐厅的声学效果,那还是很有趣的。
3 建筑功能和运营。 应该说运营上可依靠大数据的地方也很多,除了水电暖这些自动化调控,公共商业建筑对人流的监控和预测也很重要。购物、电影、餐饮、旅馆这些行业都可以大数据提出对建筑的要求,建筑师相应的提出解决方案。要知道人流对走道宽度、消防疏散、厕所配置影响很大,进而极大影响成本。过去按死规范,有时候不够有时候偏多,特别是商场的女厕所排队问题。。。
4 总之,建筑里大量涉及尺寸、大小、高度、面积,这些都可以利用大数据决策,比如厕所蹲位、休息室大小,座椅数量、开窗大小、灯光强弱、吸音降噪、电梯运行、几乎所有这些,我们过去用规范指标,现在可以用大数据了,欧耶。
三 不可预测和适应性。
最后,建筑物一经建成,其实是很难改变的,城市格局也是一旦定型,改变很难,你看北京的城市规划特别是交通结构。。。正是数据决策失败的一个典型反例。新规划没几年,人口早就突破了规划预计,整个规划又得重新修改,但城市建设根本改不过来,又不能推到重来,纠结啊。。。
大数据是动态的,建筑是静态的,即使是根据目前的大数据及其取势正确决策了,几年以后情况变化,又不适应了。这跟普通商品供给可以调整产能是不一样的。
这不但要求数据决策能够实用动态发展、有预见性,不能盲目依赖现有数据,
否则不就回到计划经济的老路了么。人的命运是不可预测的!
这也要求建筑和各种基础设施建设本身有宽容度,或者干脆是可变的,这是另一个话题,以后再说。
数据分析咨询请扫描二维码
数据收集与整理 - 从各种来源收集数据,清洗和整理以确保数据质量和可用性。 数据分析与建模 - 运用统计学方法和机器学习模型对 ...
2024-11-26技术技能 - 编程能力: 数据分析师需要掌握至少一门编程语言,如Python、R或SQL。这些语言对于数据处理、建模和分析至关重要。例 ...
2024-11-26数据分析领域涵盖多样性岗位,根据工作职责和技能需求划分。这些角色在企业中扮演关键角色,帮助组织制定战略、优化流程并实现商 ...
2024-11-26数据分析是一种通过收集、处理、解释和展示数据,以获得见解和决策支持的过程。这个领域涉及使用统计学、计算机科学和商业智能等 ...
2024-11-26数据分析领域正日益成为当今商业世界中不可或缺的一环。随着数据量的爆炸式增长,企业越来越需要能够从这些海量信息中提炼出宝贵 ...
2024-11-26数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。在追求这一职业道路上,合适的教育和培训至关重 ...
2024-11-26数据分析师作为当今信息时代中关键的职业之一,扮演着解释、预测和推动决策的重要角色。他们需要多方位技能来处理各种复杂的数据 ...
2024-11-26数据分析师在今天的商业环境中扮演着至关重要的角色。他们需要应对各种复杂的数据分析任务和业务需求,这要求他们具备广泛的技能 ...
2024-11-26在当今快速变化的技术和市场环境中,数字化转型是企业利用数字技术全面重新设计和改造业务的重要过程。这一转型旨在通过整合云计 ...
2024-11-26数字化转型: 是企业在现代技术和市场环境不断变化的背景下,利用数字技术对其业务进行全面的重新设计和改造的过程。其核心目标是 ...
2024-11-26理论基础与高级学习 数学专业理论基础: 学生首先需要掌握数学的基础理论,包括数学分析、高等代数、几何学、常微分方程、实变函 ...
2024-11-26数字化转型:现代企业蜕变的引擎 数字化转型已然成为当今企业持续发展的关键支柱。这一过程并非简单的技术升级,更是涉及企业文 ...
2024-11-26# 数据科学与大数据技术专业学什么?就业前景与行业需求 **数字化转型:引领企业进步的关键** 数字化转型是现代企业发展的必经 ...
2024-11-26理论部分 - 基础数学理论: - 学生首先需要掌握数学的基础理论,包括数学分析、高等代数、几何学、常微分方程等。 - 这些课程 ...
2024-11-26在选择数据科学和大数据技术专业时,了解不同领域的职责和技能需求至关重要。数据治理工程师是这一领域中不可或缺的角色之一,承 ...
2024-11-26基础课程 统计学基础 - 统计学是数据分析的基石,包括概率、假设检验、回归分析等基本知识,有助于理解数据背后的意义。 - ...
2024-11-26数据分析是一门综合性学科,涉及多个领域的知识和技能。要全面掌握数据分析,需要学习以下内容: 基础课程 统计学基础:统计学 ...
2024-11-26数据治理工程师在当今信息时代扮演着至关重要的角色,负责确保组织内数据的质量、安全性和可用性。他们需要具备一系列技能和才能 ...
2024-11-26在当今数字化时代,数据被誉为新的石油,是企业最有价值的资产之一。因此,建立有效的数据战略规划对于企业的成功至关重要。数据 ...
2024-11-26<section id=
2024-11-26