在各种各样的数据科学论坛上这样一个问题经常被问到——机器学习和统计模型的差别是什么?这确实是一个难以回答的问题。考虑到机器学习和统计模型解决问题的相似性,两者的区别似乎仅仅在于数据量和模型建立者的不同。这里有一张覆盖机器学习和统计模型的数据科学维恩图。
在这篇文章中,我将尽最大的努力来展示机器学习和统计模型的区别,同时也欢迎业界有经验的朋友对本文进行补充。
在我开始之前,让我们先明确使用这些工具背后的目标。无论采用哪种工具去分析问题,最终的目标都是从数据获得知识。两种方法都旨在通过分析数据的产生机制挖掘背后隐藏的信息。
两种方法的分析目标是相同的。现在让我们详细的探究一下其定义及差异。
定义
机器学习:一种不依赖于规则设计的数据学习算法。
统计模型:以数学方程形式表现变量之间关系的程式化表达
对于喜欢从实际应用中了解概念的人,上述表达也许并不明确。让我们看一个商务的案例。
商业案例
让我们用麦肯锡发布的一个有趣案例来区分两个算法。
案例:分析理解电信公司一段时间内客户的流失水平。
可获得数据:两个驱动-A&B
麦肯锡接下来的展示足够让人兴奋。盯住下图来理解一下统计模型和机器学习算法的差别。
从上图中你观察到了什么?统计模型在分类问题中得到一个简单的分类线。一条非线性的边界线区分了高风险人群和低风险人群。但当我们看到通过机器学习产生的颜色时,我们发现统计模型似乎没有办法和机器学习算法进行比较。机器学习的方法获得了任何边界都无法详细表征的信息。这就是机器学习可以为你做的。
机器学习还被应用在YouTube和Google的引擎推荐上,机器学习通过瞬间分析大量的观测样本给出近乎完美的推荐建议。即使只采用一个16 G 内存的笔记本,我每天处理数十万行的数千个参数的模型也不会超过30分钟。然而一个统计模型需要在一台超级计算机跑一百万年来来观察数千个参数。
机器学习和统计模型的差异:
在给出了两种模型在输出上的差异后,让我们更深入的了解两种范式的差异,虽然它们所做的工作类似。
所属的学派
产生时间
基于的假设
处理数据的类型
操作和对象的术语
使用的技术
预测效果和人力投入
以上提到的方面都能从每种程度上区分机器学习和统计模型,但并不能给出机器学习和统计模型的明确界限。
分属不同的学派
机器学习:计算机科学和人工智能的一个分支,通过数据学习构建分析系统,不依赖明确的构建规则。统计模型:数学的分支用以发现变量之间相关关系从而预测输出。
诞生年代不同
统计模型的历史已经有几个世纪之久。但是机器学习却是最近才发展起来的。二十世纪90年代,稳定的数字化和廉价的计算使得数据科学家停止建立完整的模型而使用计算机进行模型建立。这催生了机器学习的发展。随着数据规模和复杂程度的不断提升,机器学习不断展现出巨大的发展潜力。
假设程度差异
统计模型基于一系列的假设。例如线性回归模型假设:
(1) 自变量和因变量线性相关 (2) 同方差 (3) 波动均值为0 (4) 观测样本相互独立 (5) 波动服从正态分布
Logistics回归同样拥有很多的假设。即使是非线性回归也要遵守一个连续的分割边界的假设。然而机器学习却从这些假设中脱身出来。机器学习最大的好处在于没有连续性分割边界的限制。同样我们也并不需要假设自变量或因变量的分布。
数据区别
机器学习应用广泛。在线学习工具可飞速处理数据。这些机器学习工具可学习数以亿计的观测样本,预测和学习同步进行。一些算法如随机森林和梯度助推在处理大数据时速度很快。机器学习处理数据的广度和深度很大。但统计模型一般应用在较小的数据量和较窄的数据属性上。
命名公约
下面一些命名几乎指相同的东西:
公式:
虽然统计模型和机器学习的最终目标是相似的,但其公式化的结构却非常不同
在统计模型中,我们试图估计f 函数 通过
因变量(Y)=f(自变量)+ 扰动 函数
机器学习放弃采用函数f的形式,简化为:
输出(Y)——> 输入(X)
它试图找到n维变量X的袋子,在袋子间Y的取值明显不同。
预测效果和人力投入
自然在事情发生前并不给出任何假设。一个预测模型中越少的假设,越高的预测效率。机器学习命名的内在含义为减少人力投入。机器学习通过反复迭代学习发现隐藏在数据中的科学。由于机器学习作用在真实的数据上并不依赖于假设,预测效果是非常好的。统计模型是数学的加强,依赖于参数估计。它要求模型的建立者,提前知道或了解变量之间的关系。
结束语
虽然机器学习和统计模型看起来为预测模型的不同分支,但它们近乎相同。通过数十年的发展两种模型的差异性越来越小。模型之间相互渗透相互学习使得未来两种模型的界限更加模糊。
数据分析咨询请扫描二维码
数字化转型是企业提升竞争力和实现可持续发展的关键路径。面对快速变化的市场环境,以及技术的飞速发展,企业在数字化转型过程中 ...
2024-11-15CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14在当今高速发展的技术环境下,企业正在面临前所未有的机遇和挑战。数字化转型已成为企业保持竞争力和应对市场变化的必由之路。要 ...
2024-11-13爬虫技术在数据分析中扮演着至关重要的角色,其主要作用体现在以下几个方面: 数据收集:爬虫能够自动化地从互联网上抓取大量数 ...
2024-11-13在数据分析中,数据可视化是一种将复杂数据转化为图表、图形或其他可视形式的技术,旨在通过直观的方式帮助人们理解数据的含义与 ...
2024-11-13在现代银行业中,数字化用户行为分析已成为优化产品和服务、提升客户体验和提高业务效率的重要工具。通过全面的数据采集、深入的 ...
2024-11-13在这个数据飞速增长的时代,企业若想在竞争中占据优势,必须充分利用数据分析优化其营销策略。数据不仅有助于理解市场趋势,还可 ...
2024-11-13数据分析行业的就业趋势显示出多个积极的发展方向。随着大数据和人工智能技术的不断进步,数据分析在各行各业中的应用变得越来越 ...
2024-11-13市场数据分析是一门涉及多种技能和工具的学科,对企业在竞争激烈的市场中保持竞争力至关重要。通过数据分析,企业不仅可以了解当 ...
2024-11-13数据分析与数据挖掘是数据科学领域中两个关键的组成部分,它们各有独特的目标、方法和应用场景。尽管它们经常在实际应用中结合使 ...
2024-11-13在如今这个数据驱动的时代,数据分析能力已经成为许多行业的重要技能。无论是为工作需要,还是为了职业转型,掌握数据分析都能够 ...
2024-11-13在如今这个数据驱动的时代,数据分析能力已经成为许多行业的重要技能。无论是为工作需要,还是为了职业转型,掌握数据分析都能够 ...
2024-11-13作为一名业务分析师,你肩负着将业务需求转化为技术解决方案的重任。面试这一角色时,涉及的问题多种多样,涵盖技术技能、分析能 ...
2024-11-13自学数据分析可能看似一项艰巨的任务,尤其在开始时。但是,通过一些策略和方法,你可以系统地学习和掌握数据分析的相关知识和技 ...
2024-11-10Excel是数据分析领域中的一款强大工具,它凭借其灵活的功能和易用的界面,成为了许多数据分析师和从业者的首选。无论是简单的数 ...
2024-11-10