尽管现如今的企业对于大数据项目充满了热情,但究竟有多少关于大数据的探讨最终变成了实际执行的大数据项目呢?到底是哪些因素阻碍了企业对于大数据项目的实施呢?为了找出企业迄今没有对于这一时下炙手可热的技术做出实质性进展的原因,计算机世界网站从今年5月开始在香港地区展开了一项调查。
该项调查的重点是基于用户对于大数据的“三大特性”(数据量、种类、输入和处理速度)的态度进行的采访,这三大特性定义了大数据。截至到七月,有140多名香港地区的IT专业人士参与了这项仍在进行中的调查。
大数据项目从讨论到正式部署
首先统计的是受访者所在企业目前的状态和对大数据采用的计划。调查结果显示,采用率很低,仅有五分之一的受访专业人士表示,他们的企业目前正在使用大数据技术进行生产,另外,有9.7%的机构计划在未来12个月内实施大数据项目。
但也有40.3%的IT专业人士表示,他们所在的企业没有任何实施大数据项目的计划。而表示不确定的受访者也占到了29.5%的比例。
对于该项新兴技术采用的趋势和态度不同的企业各有不同:大多数企业往往对这项新技术持怀疑、等待和观望的态度。但是,这项调研也显示了香港地区的大多数IT专业人士都对他们所在的企业实施大数据计划的态度是十分鲜明的:它们要么非常积极的赞成该技术,要么直接持拒绝态度,并没有留下一点持怀疑态度的空间。
大数据项目的驱动因素和其所面临的挑战
为了更好的了解市场对于该技术的热情和接受程度,我们让受访者基于他们对于大数据三大特性的印象对大数据的益处进行了评价。
大数据的收集和分析大量数据的能力获得最高评价,有47%受访者将这一特性评为最重要的益处。评价第二的是:处理各种数据格式的能力。大数据技术传递速度和性能分析是排名最低,只有23.9%的IT专业人士认为该特性是其最重要的益处。
调查显示,关于实施大数据项目所面临的挑战:数据集成工具较差,数据质量差,缺乏数据架构和混乱的数据所有权位列受访者们调查结果的前四名。
在这四大因素中,前三名的挑战与技术不成熟和数据管理有关。尽管这些问题都是相当麻烦的,但他们主要是与技术相关的问题,通常是容易解决的。
好消息是,更为复杂的挑战问题,诸如开发商业案例或企业内部文化冲突的排名很低。这一发现表明,企业用户均普遍意识到大数据的益处,今后在员工教育和说服用户方面的不用花费大量的资金投资了。
数据量与种类
除了研究企业部署大数据项目的动机和面临的挑战,本次调查还进一步的研究的大数据的“三大特性”,以了解进行大数据管理的需求和期望。
在香港,被企业视为大数据的数据量标准与全球标准是持平的。大约三分之二的本地IT专业人士认为,大数据的数据量将至少要在10TB以上,接近20%的受访者不是,超过100TB的数据量才能被认为是大数据。
根据维基百科介绍,决定大数据大小的指标永远在变,截至2012年,大数据中的数据集可以由几十兆字节至数拍字节的数据组成。这指标不固定是因为传统数据库管理系统以至NoSQL等新型数据库,它们的科技和处理大容量数据的能力不断在改进。
随着技术的进步,企业的数据量还将继续增加。除了针对数据量的调查,本次调研还试图量化数据的性质对于促进大数据增长的作用。调查采访了受访者们两个单独的问题:不同类型的数据所产生的数据量,以及可能导致大数据分析的数据类型。
调查显示,目前正在大规模产生的海量数据预计也将用于大数据分析。IT专业受访者们表示,目前产生最大数据量的来源为结构化的事务处理数据和电子邮件数据,分类占到数据量的62.7%和53%。这两大数据来源所产生的数据也是可用于大数据分析的最流行的两种数据类型。
后起之秀:社会化媒体内容
鉴于大多数IT用户将能够处理大量数据的能力作为大数据最为重要的益处。大容量的数据类型就更可能被用于先进的分析了。
然而,也有例外的情况发生。社会化媒体内容即是如此。相对而言,仅有较少的企业表示,社交媒体正在产生大量的数据信息,但是社会媒体的数据信息则占到了大数据分析很高的权重。
虽然从社会媒体所产生的数据量是巨大的,大多数企业尚未开始捕获并分析这些数据集。随着社会媒体流动性和影响力的继续增加,更多的企业将转向这方面平台的洞察,届时大数据技术有望在这个过程中发挥关键性的作用。相同的动机驱动因素在利用大数据来分析数字丰富的数字媒体,如视频、音频、图像方面占到的比例更高。
分析当前和未来的状况
该调查还研究了不同类型的业务在当前所支持和采用的先进的分析方法,并预计其将在未来的发展趋势。
顶级商务功能方面,目前正在采用和执行的高级分析包括:业务报告,规划和预测和预算,这几项在未来先进的分析性能预测中排名很低。
调查表明,目前的分析主要用于执行操作的角色。更具战略性的业务功能,如战略管理,利润模型,企业绩效管理和研发,预计在未来的先进分析应用中将占主导地位。
这一发现表明,香港地区的企业非常了解大数据分析的战略价值。先进的分析方法是将从当前的业务支持更多转向发挥战略方面的作用。随着企业对于更大量数据和更多类型数据的收集的增加,以及分析模型演进,预计企业将在未来利用大数据分析进行战略决策。
输入和处理速度仍然很重要
尽管受访者对于数据分析速度的排名较低,但其性能似乎对本地企业来说仍然是一个问题。
该调研调查了受访者们关于查询分析结果的最佳时间。虽然大多数的IT受访者表示可以为结果等待一分钟的时间,超过三分之一的受访者则希望能够在不到10秒的时间内就得到分析结果,以满足其业务需要。
这一发现表明,输入和处理速度、以及数据量的问题将对企业的IT部门及其处理进程提出相应的要求。如果数据结构和IT基础设施还没有准备好能够在10秒内处理并分析100TB的数据,一些IT用户则表示这是无法接受的。
调查结果表明,大多数IT用户关心的是现有的信息基础设施所采集的大数据的状态。对于数据结构和IT基础设施缺乏信心是香港企业最为关注的问题。而如果不建立这样的信心,大数据项目的采用将很难实现。
结论
对IT基础架构和数据架构缺乏信心妨碍了企业对于大数据项目的投资
大数据处理海量数据的能力最为重要
先进的分析将在未来发挥更具战略性的业务功能
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31本人基本情况: 学校及专业:厦门大学经济学院应用统计 实习经历:快手数据分析、字节数据分析、百度数据分析 Offer情况:北京 ...
2025-01-3001专家简介 徐杨老师,CDA数据科学研究院教研副总监,主要负责CDA认证项目以及机器学习/人工智能类课程的研发与授课,负责过中 ...
2025-01-29持证人简介 郭畅,CDA数据分析师二级持证人,安徽大学毕业,目前就职于徽商银行总行大数据部,两年工作经验,主要参与两项跨部 ...
2025-01-282025年刚开启,知乎上就出现了一个热帖: 2024年突然出现的经济下行,使各行各业都感觉到压力山大。有人说,大环境越来越不好了 ...
2025-01-27在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-01-26数据指标体系 “数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而 ...
2025-01-26在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-25俗话说的好“文不如表,表不如图”,图的信息传达效率很高,是数据汇报、数据展示的重要手段。好的数据展示不仅需要有图,还要选 ...
2025-01-24数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪70 ...
2025-01-24又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-23“用户旅程分析”概念 用户旅程图又叫做用户体验地图,它是用于描述用户在与产品或服务互动的过程中所经历的各个阶段、触点和情 ...
2025-01-22在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-22在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07