算法介绍
以时间顺序挖掘周期性的模式(即周期性分析)是一种重要的数据挖掘方式,在以前的研究中我们假设每个时间点只发生一个事件,然而在这篇文章中我们研究一种更普遍的模式:即在每个时间点可以发生多个事件。
在这个算法中我们需要自己设置三个参数:min_rep, max_dis, global_rep。分别代表“一个有效序列的最小重复次数”、“相邻有效序列最大允许扰动”、“有效序列总的要求重复次数”。其实在算法最后中我们会发现,我们也可以设置另外一个参数Lmaxn,即允许的最大周期。
最后,这个算法原作者似乎认为效果不错,->.->
问题定义
在这个部分中,我们定义一些异步周期挖掘的问题。
E代表所有事件的集合,即一个事件的集合一定是E的一个非空子集。信息库D是一系列的时间记录,每一个记录用一个数组来表示(tid, X),表示在tid时刻发生了集合X中的事件。同时D的这种表示方法我们定义为水平表达格式(horizontal format),具体请看下表。同时对于另一个事件集合Y,我们定义Y是被一个时间记录所支持需满足:Y⊆X。一个有k个事件的序列一般称为k-事件序列(k-event set)。
Time | Event Set | Time | Event Set | Time | Event Set |
---|---|---|---|---|---|
1 | A, B, C | 7 | A, B, C, D | 13 | A, C, D |
2 | B, D | 8 | A | 14 | A, C |
3 | A, C, D | 9 | A, C, D | 15 | A, D |
4 | B | 10 | A, C | 16 | A, C, D |
5 | A, C | 11 | D | 17 | A |
6 | D | 12 | A, B, C, D | 18 | A, B, C, D |
定义 1:一个以l为周期的模式是一个非空序列P=(p1,p2,…,pl),其中p1是一个事件序列,其他的或者是一个事件序列,或者是*,即可以理解为任何序列。
一个模式P若包含i个事件则被称作i-模式(i-pattern)。特别的,我们称1-模式为单模式(singular patterns),当i>1时我们称之为复杂模式(complax patterns),例如(A, *, *)是一个单模式而(A, B, *)是一个2-模式,也称为复杂模式。如果一个模式不包含任何“*”我们就称之为满模式(full pattern),否则就称之为部分模式(partial pattern)。
定义 2:设有周期为了的模式P=(p1,p2,…,pl)和一个包含l个事件的集合D’=(d1,d2,…,dl),我们定义P匹配D’当且仅当对于每个j(1<=j<=l),或者pj=*,或者pj⊆dj。D’也可以称为P的一个匹配项。
比如现在有一个模式P=(A, B, *),那么*显然可以和任何事件序列匹配,于是如果我们有D=(A, B, C)就是一个P的一个匹配项。
定义 3:为了方便,我们用一个4元组(P, l, rep, pos)来定义一个模式片段P,它的周期l,开始位置是pos,并重复rep次,一般我们假设这个rep要取最大值(maximum segment)。
定义 4:一个最大片段(maximum segment)是一个有效片段当且仅当其重复次数不小于参数min_rep。
我们再定义一下扰动的概念:连个片段的扰动就是第一个片段的尾部和第二个片段的开始的位置之间的距离。例如在下图中,S1和S3之间的扰动是8(15 – 3)。
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A | C | B | A | E | D | A | A | B | C | A | B | C | A | A | D | A | A | B | C | A | E | C |
D1 | D1 | D1 | D2 | D2 | D2 | D3 | D3 | D3 |
|
|
|
|
|
D8 | D8 | D8 | D9 | D9 | D9 | D10 | D10 | D10 |
S1 | S1 | S1 | S1 | S1 | S1 | S1 | S1 | S1 |
|
|
|
|
|
S3 | S3 | S3 | S3 | S3 | S3 | S3 | S3 | S3 |
定义 5:假设一个时间的数据库D和一个模式P,序列D是一系列不重合的有效序列,并且其中任意相邻片段的扰动小于一个预定的值,我们称之为最大扰动max_dis。一个序列被称作是有效的当且仅当P的全部的重合的次数大于一个预定的参数global_rep。
对于Fig.1b,如果我们设min_rep = 2, global_rep = 6, max_dis = 8,那么我们将会得到两个有效序列(S1, S2),和(S1, S3)。而我们的任务找到所有有效的周期序列,其周期在1~Lmax之间,其中Lmax由用户给定。
算法预览
在这个模块中,我们从挖掘单模式的周期序列到复杂模式周期序列,展示一下在时间数据库中异步周期序列挖掘的过程。首先一个称为“SPMiner”被用来找所有的单模式周期序列,它的原理主要是潜在循环试探(Potential Cycle Detection)和基于哈希的表(Hash-Based Validation)。然后,两个算法“MPMiner”和“CPMiner”被用来寻找有效的多重单模式(multievent 1-patterns)和复杂模式序列(complex patterns)。最后,所有的有效片段都可以组合在一起来检测是否满足要求,即最后的”APMiner”。详细见下图:
现在我们分步骤来讲解每一步的具体方法及部分伪代码
SPMiner:Segment Mining for Single Event Pattern
首先,我们在前面提过一种叫做水平数据格式(horizontal database layout)的数据结构,现在我们要使用一种和其相对应的垂直数据格式(vertical database format),具体请见下表,它可以大大提高我们的搜索效率。
Event | TimeList |
---|---|
A | 1, 3, 5, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18 |
B | 1, 2, 4, 7, 12, 18 |
C | 1, 3, 5, 7, 9, 10, 12, 13, 14, 16, 18 |
D | 2, 3, 6, 7, 9, 11, 12, 13, 15, 16, 18 |
PCD算法(Potential Cycle Detection)测探所有在1~Lmax之间的可能周期,具体看伪代码。
HBV算法(Hash-Based Validation)可以对于每个潜在的周期p和一个事件列表e,通过遍历一遍事件表来找出所有的单模式序列。具体看伪代码。
Procedure of SPMiner(D, Lmax)
for each event Ei ∈ VD do:
PCD(Ei, TimeList);
for p = 1 to Lmax do
if(CheckSet[p] >= min_rep)
then HBV(Ei, Ei.TimeList, p);
Procedure of PCD(TimeList)
for i = 1 to i <= Lmax do CheckSet[i] = 1;
for each time instant Ti ∈ TimeList do
for each time instant Tj ∈ TimeList, i < j do
if((Tj - Ti) <= Lmax) then
CheckSet[Tj - Ti]++;
else break;
Procedure of HBV(EvtSet, TimeList, p)
Allocate data structure Cseg[p];
for i = 0 to p - 1 do /* Initilization */
Cseg[i].last = -Max; Cseg[i].rep = 1;
/* Validation */
for each time instant Ti ∈ TimeList do
pos = Ti % p;
if(Ti - Cseg[pos].last == p) then
Cseg[pos].rep++; Cseg[pos].last = Ti; continue;
if(Cseg[pos].rep >= min_rep) then
Output(EvtSet, p, Cseg[pos].rep, Cseg[pos].last - p * (Cseg[pos].rep - 1));
Cseg[pos].rep = 1; Cseg[pos].last = Ti;
for i = 0 to p - 1 do /* Rechecking */
if(Cseg[i].rep >= min_rep) then
Output(EvtSet, p, Cseg[i].rep, Cseg[i].last - p * (Cseg[i].rep - 1));
最后我们会得到如下的结果
Pattern | Period | Rep | Start |
---|---|---|---|
A | 1 | 7 | 12 |
A | 2 | 5 | 1 |
A | 2 | 6 | 8 |
C | 2 | 5 | 1 |
C | 2 | 5 | 10 |
D | 2 | 5 | 7 |
D | 3 | 6 | 3 |
这里我们直接介绍推荐的SBE算法(Segment-Based Enumeration)。
SBE算法的思路是,对于一个周期p,先在上表中找到周期为p的项。我们假设一个变量off = start % p,这样我们在此步找到的组合内部off则一定相同。如果最后重合部分还大于参数min_rep,那么我们就成功的找到了一组答案了。而对于重合的部分,我们也可以根据上表在O(1)的时间内计算出来。
这一步的做法和上一步的SBE算法十分相似。
不过在上一步中我们要求off相同才能放在一组,而在这一步中我们要求off必须不同才能在一组,伪代码如下
Procedure of CPMiner(p, SegListp, w.r.t period p)
for each segment Si ∈ SegListp; do
Node.Head = Si;
Node.Tail = all segment Sj ∈ SegList with j > i;
Node.start = Si.start;
Node.end = Si.start + (Si.rep - 1) * p;
CP(Node, p);
Subprocedure of CP_DFS(Node, p)
if(|Node.Head| == p) then return ;
for each segment Si ∈ Node.Tail do
Valid = True;
for each setment Sj ∈ Node.Head do
if((Si.start - Sj.start) % p == 0) then
Valid = false; break;
if(Valid == false) then continue;
newC.start = Si.start;
newC.end = Min{Node.end, Si.start + (Si.rep - 1) * p}; //take care
rep = ⌊(newC.end - newC.start) / p⌋ + 1; //take care
if(rep >= min_rep)
newC.Head = Node.Head ∪ Si;
newC.Tail = all Sk ∈ Node.Tail with k > i;
PatternOutput(newC, p, rep)
CP_DFS(newC, p);
else if(Node.end - Node.start + 1 < p * min_rep) break;
Subprocedure of PatternOutput(Node, p, rep)
Shift = Node.end % p //take care not Node.start!
for i = 1 to p do Pattern[i] = *;
for each segment Si ∈ Node.Head do
Pattern[(Si.start - Shift) % p] = Si.EvtSet;
Output(Pattern, rep, p, Node.end - (rep - 1) * p);
就像我们在定义5中说的那样,一个异步周期模式被定义为有一组序列互不重合。因此我们还需使用深度优先搜索来枚举所有的组合方式。现在假设我们把所有的片段按照开始的时间排序,一个单模式的片段如果重复次数大于global_rep,那么它本身就是一个合法答案,但是每次枚举过程中,我们总要尽力的把新的事件加入到已有的事件序列中。同时,如果新的片段距离的开始位置距离已有片段的距离小于max_dis,那么我们也可以把它加入进去。但是一旦上述条件不符合的话,我们就可以跳出搜索了,因为我们是按照开始的时间顺序有小到大排序的,这样可以达到剪枝的效果。
数据分析咨询请扫描二维码
数字化转型是企业提升竞争力和实现可持续发展的关键路径。面对快速变化的市场环境,以及技术的飞速发展,企业在数字化转型过程中 ...
2024-11-15CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14在当今高速发展的技术环境下,企业正在面临前所未有的机遇和挑战。数字化转型已成为企业保持竞争力和应对市场变化的必由之路。要 ...
2024-11-13爬虫技术在数据分析中扮演着至关重要的角色,其主要作用体现在以下几个方面: 数据收集:爬虫能够自动化地从互联网上抓取大量数 ...
2024-11-13在数据分析中,数据可视化是一种将复杂数据转化为图表、图形或其他可视形式的技术,旨在通过直观的方式帮助人们理解数据的含义与 ...
2024-11-13在现代银行业中,数字化用户行为分析已成为优化产品和服务、提升客户体验和提高业务效率的重要工具。通过全面的数据采集、深入的 ...
2024-11-13在这个数据飞速增长的时代,企业若想在竞争中占据优势,必须充分利用数据分析优化其营销策略。数据不仅有助于理解市场趋势,还可 ...
2024-11-13数据分析行业的就业趋势显示出多个积极的发展方向。随着大数据和人工智能技术的不断进步,数据分析在各行各业中的应用变得越来越 ...
2024-11-13市场数据分析是一门涉及多种技能和工具的学科,对企业在竞争激烈的市场中保持竞争力至关重要。通过数据分析,企业不仅可以了解当 ...
2024-11-13数据分析与数据挖掘是数据科学领域中两个关键的组成部分,它们各有独特的目标、方法和应用场景。尽管它们经常在实际应用中结合使 ...
2024-11-13在如今这个数据驱动的时代,数据分析能力已经成为许多行业的重要技能。无论是为工作需要,还是为了职业转型,掌握数据分析都能够 ...
2024-11-13在如今这个数据驱动的时代,数据分析能力已经成为许多行业的重要技能。无论是为工作需要,还是为了职业转型,掌握数据分析都能够 ...
2024-11-13作为一名业务分析师,你肩负着将业务需求转化为技术解决方案的重任。面试这一角色时,涉及的问题多种多样,涵盖技术技能、分析能 ...
2024-11-13自学数据分析可能看似一项艰巨的任务,尤其在开始时。但是,通过一些策略和方法,你可以系统地学习和掌握数据分析的相关知识和技 ...
2024-11-10Excel是数据分析领域中的一款强大工具,它凭借其灵活的功能和易用的界面,成为了许多数据分析师和从业者的首选。无论是简单的数 ...
2024-11-10