算法介绍
以时间顺序挖掘周期性的模式(即周期性分析)是一种重要的数据挖掘方式,在以前的研究中我们假设每个时间点只发生一个事件,然而在这篇文章中我们研究一种更普遍的模式:即在每个时间点可以发生多个事件。
在这个算法中我们需要自己设置三个参数:min_rep, max_dis, global_rep。分别代表“一个有效序列的最小重复次数”、“相邻有效序列最大允许扰动”、“有效序列总的要求重复次数”。其实在算法最后中我们会发现,我们也可以设置另外一个参数Lmaxn,即允许的最大周期。
最后,这个算法原作者似乎认为效果不错,->.->
问题定义
在这个部分中,我们定义一些异步周期挖掘的问题。
E代表所有事件的集合,即一个事件的集合一定是E的一个非空子集。信息库D是一系列的时间记录,每一个记录用一个数组来表示(tid, X),表示在tid时刻发生了集合X中的事件。同时D的这种表示方法我们定义为水平表达格式(horizontal format),具体请看下表。同时对于另一个事件集合Y,我们定义Y是被一个时间记录所支持需满足:Y⊆X。一个有k个事件的序列一般称为k-事件序列(k-event set)。
Time | Event Set | Time | Event Set | Time | Event Set |
---|---|---|---|---|---|
1 | A, B, C | 7 | A, B, C, D | 13 | A, C, D |
2 | B, D | 8 | A | 14 | A, C |
3 | A, C, D | 9 | A, C, D | 15 | A, D |
4 | B | 10 | A, C | 16 | A, C, D |
5 | A, C | 11 | D | 17 | A |
6 | D | 12 | A, B, C, D | 18 | A, B, C, D |
定义 1:一个以l为周期的模式是一个非空序列P=(p1,p2,…,pl),其中p1是一个事件序列,其他的或者是一个事件序列,或者是*,即可以理解为任何序列。
一个模式P若包含i个事件则被称作i-模式(i-pattern)。特别的,我们称1-模式为单模式(singular patterns),当i>1时我们称之为复杂模式(complax patterns),例如(A, *, *)是一个单模式而(A, B, *)是一个2-模式,也称为复杂模式。如果一个模式不包含任何“*”我们就称之为满模式(full pattern),否则就称之为部分模式(partial pattern)。
定义 2:设有周期为了的模式P=(p1,p2,…,pl)和一个包含l个事件的集合D’=(d1,d2,…,dl),我们定义P匹配D’当且仅当对于每个j(1<=j<=l),或者pj=*,或者pj⊆dj。D’也可以称为P的一个匹配项。
比如现在有一个模式P=(A, B, *),那么*显然可以和任何事件序列匹配,于是如果我们有D=(A, B, C)就是一个P的一个匹配项。
定义 3:为了方便,我们用一个4元组(P, l, rep, pos)来定义一个模式片段P,它的周期l,开始位置是pos,并重复rep次,一般我们假设这个rep要取最大值(maximum segment)。
定义 4:一个最大片段(maximum segment)是一个有效片段当且仅当其重复次数不小于参数min_rep。
我们再定义一下扰动的概念:连个片段的扰动就是第一个片段的尾部和第二个片段的开始的位置之间的距离。例如在下图中,S1和S3之间的扰动是8(15 – 3)。
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A | C | B | A | E | D | A | A | B | C | A | B | C | A | A | D | A | A | B | C | A | E | C |
D1 | D1 | D1 | D2 | D2 | D2 | D3 | D3 | D3 |
|
|
|
|
|
D8 | D8 | D8 | D9 | D9 | D9 | D10 | D10 | D10 |
S1 | S1 | S1 | S1 | S1 | S1 | S1 | S1 | S1 |
|
|
|
|
|
S3 | S3 | S3 | S3 | S3 | S3 | S3 | S3 | S3 |
定义 5:假设一个时间的数据库D和一个模式P,序列D是一系列不重合的有效序列,并且其中任意相邻片段的扰动小于一个预定的值,我们称之为最大扰动max_dis。一个序列被称作是有效的当且仅当P的全部的重合的次数大于一个预定的参数global_rep。
对于Fig.1b,如果我们设min_rep = 2, global_rep = 6, max_dis = 8,那么我们将会得到两个有效序列(S1, S2),和(S1, S3)。而我们的任务找到所有有效的周期序列,其周期在1~Lmax之间,其中Lmax由用户给定。
算法预览
在这个模块中,我们从挖掘单模式的周期序列到复杂模式周期序列,展示一下在时间数据库中异步周期序列挖掘的过程。首先一个称为“SPMiner”被用来找所有的单模式周期序列,它的原理主要是潜在循环试探(Potential Cycle Detection)和基于哈希的表(Hash-Based Validation)。然后,两个算法“MPMiner”和“CPMiner”被用来寻找有效的多重单模式(multievent 1-patterns)和复杂模式序列(complex patterns)。最后,所有的有效片段都可以组合在一起来检测是否满足要求,即最后的”APMiner”。详细见下图:
现在我们分步骤来讲解每一步的具体方法及部分伪代码
SPMiner:Segment Mining for Single Event Pattern
首先,我们在前面提过一种叫做水平数据格式(horizontal database layout)的数据结构,现在我们要使用一种和其相对应的垂直数据格式(vertical database format),具体请见下表,它可以大大提高我们的搜索效率。
Event | TimeList |
---|---|
A | 1, 3, 5, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18 |
B | 1, 2, 4, 7, 12, 18 |
C | 1, 3, 5, 7, 9, 10, 12, 13, 14, 16, 18 |
D | 2, 3, 6, 7, 9, 11, 12, 13, 15, 16, 18 |
PCD算法(Potential Cycle Detection)测探所有在1~Lmax之间的可能周期,具体看伪代码。
HBV算法(Hash-Based Validation)可以对于每个潜在的周期p和一个事件列表e,通过遍历一遍事件表来找出所有的单模式序列。具体看伪代码。
Procedure of SPMiner(D, Lmax)
for each event Ei ∈ VD do:
PCD(Ei, TimeList);
for p = 1 to Lmax do
if(CheckSet[p] >= min_rep)
then HBV(Ei, Ei.TimeList, p);
Procedure of PCD(TimeList)
for i = 1 to i <= Lmax do CheckSet[i] = 1;
for each time instant Ti ∈ TimeList do
for each time instant Tj ∈ TimeList, i < j do
if((Tj - Ti) <= Lmax) then
CheckSet[Tj - Ti]++;
else break;
Procedure of HBV(EvtSet, TimeList, p)
Allocate data structure Cseg[p];
for i = 0 to p - 1 do /* Initilization */
Cseg[i].last = -Max; Cseg[i].rep = 1;
/* Validation */
for each time instant Ti ∈ TimeList do
pos = Ti % p;
if(Ti - Cseg[pos].last == p) then
Cseg[pos].rep++; Cseg[pos].last = Ti; continue;
if(Cseg[pos].rep >= min_rep) then
Output(EvtSet, p, Cseg[pos].rep, Cseg[pos].last - p * (Cseg[pos].rep - 1));
Cseg[pos].rep = 1; Cseg[pos].last = Ti;
for i = 0 to p - 1 do /* Rechecking */
if(Cseg[i].rep >= min_rep) then
Output(EvtSet, p, Cseg[i].rep, Cseg[i].last - p * (Cseg[i].rep - 1));
最后我们会得到如下的结果
Pattern | Period | Rep | Start |
---|---|---|---|
A | 1 | 7 | 12 |
A | 2 | 5 | 1 |
A | 2 | 6 | 8 |
C | 2 | 5 | 1 |
C | 2 | 5 | 10 |
D | 2 | 5 | 7 |
D | 3 | 6 | 3 |
这里我们直接介绍推荐的SBE算法(Segment-Based Enumeration)。
SBE算法的思路是,对于一个周期p,先在上表中找到周期为p的项。我们假设一个变量off = start % p,这样我们在此步找到的组合内部off则一定相同。如果最后重合部分还大于参数min_rep,那么我们就成功的找到了一组答案了。而对于重合的部分,我们也可以根据上表在O(1)的时间内计算出来。
这一步的做法和上一步的SBE算法十分相似。
不过在上一步中我们要求off相同才能放在一组,而在这一步中我们要求off必须不同才能在一组,伪代码如下
Procedure of CPMiner(p, SegListp, w.r.t period p)
for each segment Si ∈ SegListp; do
Node.Head = Si;
Node.Tail = all segment Sj ∈ SegList with j > i;
Node.start = Si.start;
Node.end = Si.start + (Si.rep - 1) * p;
CP(Node, p);
Subprocedure of CP_DFS(Node, p)
if(|Node.Head| == p) then return ;
for each segment Si ∈ Node.Tail do
Valid = True;
for each setment Sj ∈ Node.Head do
if((Si.start - Sj.start) % p == 0) then
Valid = false; break;
if(Valid == false) then continue;
newC.start = Si.start;
newC.end = Min{Node.end, Si.start + (Si.rep - 1) * p}; //take care
rep = ⌊(newC.end - newC.start) / p⌋ + 1; //take care
if(rep >= min_rep)
newC.Head = Node.Head ∪ Si;
newC.Tail = all Sk ∈ Node.Tail with k > i;
PatternOutput(newC, p, rep)
CP_DFS(newC, p);
else if(Node.end - Node.start + 1 < p * min_rep) break;
Subprocedure of PatternOutput(Node, p, rep)
Shift = Node.end % p //take care not Node.start!
for i = 1 to p do Pattern[i] = *;
for each segment Si ∈ Node.Head do
Pattern[(Si.start - Shift) % p] = Si.EvtSet;
Output(Pattern, rep, p, Node.end - (rep - 1) * p);
就像我们在定义5中说的那样,一个异步周期模式被定义为有一组序列互不重合。因此我们还需使用深度优先搜索来枚举所有的组合方式。现在假设我们把所有的片段按照开始的时间排序,一个单模式的片段如果重复次数大于global_rep,那么它本身就是一个合法答案,但是每次枚举过程中,我们总要尽力的把新的事件加入到已有的事件序列中。同时,如果新的片段距离的开始位置距离已有片段的距离小于max_dis,那么我们也可以把它加入进去。但是一旦上述条件不符合的话,我们就可以跳出搜索了,因为我们是按照开始的时间顺序有小到大排序的,这样可以达到剪枝的效果。
数据分析咨询请扫描二维码
在准备数据分析师面试时,掌握高频考题及其解答是应对面试的关键。为了帮助大家轻松上岸,以下是10个高频考题及其详细解析,外加 ...
2024-12-20互联网数据分析师是一个热门且综合性的职业,他们通过数据挖掘和分析,为企业的业务决策和运营优化提供强有力的支持。尤其在如今 ...
2024-12-20在现代商业环境中,数据分析师是不可或缺的角色。他们的工作不仅仅是对数据进行深入分析,更是协助企业从复杂的数据信息中提炼出 ...
2024-12-20随着大数据时代的到来,数据驱动的决策方式开始受到越来越多企业的青睐。近年来,数据分析在人力资源管理中正在扮演着至关重要的 ...
2024-12-20在数据分析的世界里,表面上的技术操作只是“入门票”,而真正的高手则需要打破一些“看不见的墙”。这些“隐形天花板”限制了数 ...
2024-12-19在数据分析领域,尽管行业前景广阔、岗位需求旺盛,但实际的工作难度却远超很多人的想象。很多新手初入数据分析岗位时,常常被各 ...
2024-12-19入门数据分析,许多人都会感到“难”,但这“难”究竟难在哪儿?对于新手而言,往往不是技术不行,而是思维方式、业务理解和实践 ...
2024-12-19在如今的行业动荡背景下,数据分析师的职业前景虽然面临一些挑战,但也充满了许多新的机会。随着技术的不断发展和多领域需求的提 ...
2024-12-19在信息爆炸的时代,数据分析师如同探险家,在浩瀚的数据海洋中寻觅有价值的宝藏。这不仅需要技术上的过硬实力,还需要一种艺术家 ...
2024-12-19在当今信息化社会,大数据已成为各行各业不可或缺的宝贵资源。大数据专业应运而生,旨在培养具备扎实理论基础和实践能力,能够应 ...
2024-12-19阿里P8、P9失业都找不到工作?是我们孤陋寡闻还是世界真的已经“癫”成这样了? 案例一:本硕都是 985,所学的专业也是当红专业 ...
2024-12-19CDA持证人Louis CDA持证人基本情况 我大学是在一个二线城市的一所普通二本院校读的,专业是旅游管理,非计算机非统计学。毕业之 ...
2024-12-18最近,知乎上有个很火的话题:“一个人为何会陷入社会底层”? 有人说,这个世界上只有一个分水岭,就是“羊水”;还有人说,一 ...
2024-12-18在这个数据驱动的时代,数据分析师的技能需求快速增长。掌握适当的编程语言不仅能增强分析能力,还能帮助分析师从海量数据中提取 ...
2024-12-17在当今信息爆炸的时代,数据分析已经成为许多行业中不可或缺的一部分。想要在这个领域脱颖而出,除了热情和毅力外,你还需要掌握 ...
2024-12-17数据分析,是一项通过科学方法处理数据以获取洞察并支持决策的艺术。无论是在商业环境中提升业绩,还是在科研领域推动创新,数据 ...
2024-12-17在数据分析领域,图表是我们表达数据故事的重要工具。它们不仅让数据变得更加直观,也帮助我们更好地理解数据中的趋势和模式。相 ...
2024-12-16在当今社会,我们身处着一个飞速发展、变化迅猛的时代。不同行业在科技进步、市场需求和政策支持的推动下蓬勃发展,呈现出令人瞩 ...
2024-12-16在现代商业世界中,数据分析师扮演着至关重要的角色。他们通过解析海量数据,为企业战略决策提供有力支持。要有效完成这项任务, ...
2024-12-16在当今数据爆炸的时代,数据分析师是组织中不可或缺的导航者。他们通过从大量数据中提取可操作的洞察力,帮助企业在竞争激烈的市 ...
2024-12-16