2016年大数据技术将迎来怎样的发展态势?预计机器学习、实时数据即服务、算法市场以及Spark等等都将成为发展热点。
1.首席数据官全面崛起
随着企业努力克服由变化带来的冲击,同时需要立足于数字化时代与竞争对手进行对抗,相信将有更多企业将关注重点放在新的高管职位——首席数据官(简称CDO)身上。而这类角色也将成为推动业务发展战略的中坚力量。
“首席数据官将迎来权力、声明以及……存在感,”Forrester研究公司企业架构首席分析师兼副总裁pian Hopkins在一篇博文中写道。“不过从长远角度看,这一职能角色的可行性尚存在疑问。某些类型的企业,例如数字原住民,可能无法通过任命CDO获得回报。”
2. 支撑业务用户
受到大数据人才短缺以及必要商业信息交付能力匮乏的影响,市场需要更多分析师及数据科学家补充进来,并利用更多工具与相关功能将信息直接交付给对应的用户群体。举例来说,微软与Salesforce双方最近各自公布了此类方案,旨在帮助非程序员用户创建应用以审查商业数据。
3.智能化嵌入
无代码编写要求的应用已经成为企业需要重视的一种可行方案,旨在简化业务用户获取所需信息的流程。不过还将有另一些成果不断涌现,即在企业内各应用程序中直接嵌入分析功能。IDC公司预测称,到2020年将有半数商业分析软件包含以认知计算功能为基础的规范性分析能力。
而着眼于宏观角度,Gartner公司指出“自主性主体与方案”将成为另一大新兴趋势,目前已经出炉的相当方案包括机器人、自动驾驶车辆、虚拟个人助手以及智能顾问等等。
“在未来五年当中,我们将迎来所谓后应用时代,届时各智能化主体将带来动态及背景关联行为及接口,”Gartner公司副总裁兼研究员David Cearley在一份声明当中指出。“IT领导者们应当探索如何利用自主性方案及主体以强化人类活动并承接部分原本必须要以人工方式完成的任务。”
4.人才短缺问题能否得到解决?
还在苦苦寻求出色的数据科学家?相信我,其它企业也面临着同样的困扰。最近由商业咨询企业A.T. Kearney公司发布的一份报告显示,72%的全球领先企业都表示自己很难招聘到合格的数据科学人才。
不过国际分析协会则预测称,随着企业逐步采取新型战术思路,人才短缺的问题可能会在2016年年内得到缓解。
“大型企业不会再过多纠结于人才短缺问题了,”该组织在其预测与优先级展望报告中提到。“相反,他们开始采取一些其它办法解决危机,包括出台新的大学课程、改善招聘流程并建立内部规程,从而培养现有员工掌握分析与数据科学。如此一来,迫切希望实现数据分析能力的企业将最终得偿所愿。”
与此同时,IDC公司发布报告指出,这种人员短缺问题将由数据科学家领域延伸至数据架构以及数据管理层面。这将推动大数据相关专业服务业务从目前到2020年获得高达23%的年均复合增长率。
5.机器学习迎来上扬态势
所谓机器学习,可以理解为创建相关算法以帮助计算机通过经验实现学习,而其也成功吸引到了众多希望利用自动化手段取代以往人工处理流程的企业的高度关注。分析企业Ovum公司预测,机器学习将在2016年当中成为“数据准备与预测分析工作的必要前提”。
而Gartner方面则着眼于下个阶段,将先进机器学习技术视为最重要的未来战略趋势。这家分析企业宣称,机器学习中的各类先进表现形式名为深度神经网络,其能够创造系统并学会自行认知世界。“这一领域发展迅速,而各企业也必须评估自身要如何运用这些技术以取得竞争优势。”
6. 人人都爱Spark
分析企业Ovum公司指出,SQL将在大数据分析工作中获得“至高无上”的地位,但Spark的崛起速度同样非常惊人。“Spark将作为SQL的补充性方案,为我们提供额外的结论获取途径,例如实现图形分析流并帮助开发人员利用自己所熟悉的语言对企业数据库内的数据流进行查询,”Ovum公司首席分析师Tony Baer在一篇博文当中写道。
7.数据即服务业务模式即将出现
IBM公司刚刚收购了Weather公司,而获取后者数据、数据流以及预测分析方案的实质在于着眼于未来。各企业需要将数据流即服务打包成为新的业务模式。也有一部分企业着眼于相关软件包并出售自己的数据。Forrester公司预测称,部分企业将凭借这项发展战略获得市场成功,但“大部分无法取得实质性进展。尽管拥有乐观的承诺,但大多数企业其实很难解决个人信息保护以及对应商业模式所带来的复杂性难题,”Forrester公司副总裁pian Hopkins在他的个人博客当中写道。
8. 实时分析结论
Forrester公司预测数据流提取与分析将在2016年年内成为数字化领域胜出企业们的必要能力。
“将数据转化为实际行动的通道非常狭窄。在未来12个月当中,将有更多立足于Kafka及Spark等开源项目的开源数据流分析方案不断涌现,”Forrester公司副总裁pian Hopkins在博文中写道。
9.算法市场的兴起
这是Forrester公司提出的另一项预测。“各企业将意识到很多算法与其自行开发,不如通过市场购买,而后直接向其中添加数据即可,”Forrester公司的pian Hopkins写道。他同时列出了目前已经出现的几种此类服务,包括Algorithmia、Data Xu以及Kaggle。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31提到数据分析,你脑海里可能会浮现出一群“数字控”抱着电脑,在海量数据里疯狂敲代码的画面。但事实是,数据分析并没有你想象的 ...
2024-12-31关于数据分析师是否会成为失业高危职业,近年来的讨论层出不穷。在这个快速变化的时代,技术进步让人既兴奋又不安。今天,我们从 ...
2024-12-30