
基于最小二乘法的异常行为分析模型设计
本文针对异常访问现状及问题进行简要描述,在此基础上提出基于一元线性回归的最小二乘法异常访问分析模型,通过该模型解决了异常访问中时间与访问间相关性问题。
异常访问是指网络行为偏离正常范围的访问情况。异常访问包含多种场景,如Web访问、数据库访问、操作系统访问、终端交互等。
异常访问一直是网络信息安全中备受困扰的。困扰主要体现在以下几个方面,通过某一个模型满足所有场景,模型缺少明确使用条件致使结果不明确,模型计算量大计算耗时长等方面。
基于以上的现状,本文仅针对系统登录异常访问进行分析,通过对系统登录事件与时间进行回归统计筛选出异常访问时间段。
下图为异常登录事件检测的时序图:
异常登录时序图
异常登录事件模型的活动图流程如下:
1)用户进行登录,输入相应的用户名及口令。
2)系统进行登录验证,判断是否为合法用户登录。
3)登录成功或失败均会将本次登录行为记录下来。
4)日志自动发送至分析系统。
5)分析系统对收到的日志进行分析,分析采用最小二乘法。
6)如果发现异常登录事件则触发告警事件。
7)最后工作人员可收到告警提示,并查看到相应的告警。
当触发告警后,工作人员需要在量化分析中进行进一步分系工作。通过日志的登录事件能够找到何人何时登录哪个系统。详细记录下这些信息后方可以进行后续的时间处置工作。
异常登录模型是分析系统的一个重要分析模型。这个分析模型中采用最小二乘法对登录事件进行异常判断。异常判断包括成功登录的异常判断,以及未成功登录的异常判断两类。
以下面的成功登录事件为例进行详细说明:
登录统计列表
上面的表格中描述的是以5分钟为单位时间内,系统登录成功的事件统计。
此时我们无法看出哪个时间单位内存在异常登录的情况。
如下图所示:
登陆次数散点图
首先采用“最小二乘法”对其求解。
最小二乘法
求解出直线与散点图叠加,如下所示:
登录次数最小二乘法拟合图
回归模型
经过逐一计算每个点的残差如下:
登陆次数残差结果表
通过上面的表格可以看到,序号为5、9、10的三个点残差值偏离相对比较大。同时,根据经验判断,正常的登录事件残差值通常在-10~+10之间。而这3个点的残差值偏离区间明显。残差值分别为“15.23967”,”-16.4549”,“15.098”。
针对此登录事件我们采用的置信区间为-10~+10,置信区间可根据不同的场景进行调整。
通过采用最小二乘法的方式进行异常登录事件查询,能够很好的解决传统统计表格中难以发现的问题。传统的方式都是采用TopN的方式对登录成功、登录失败的事件进行简单罗列。但在众多的登录事件中,哪些是值得工作人员关注的却难以得到体现。
最小二乘法的引用可以从众多的登录事件中分离出最为明显的异常行为,通过系统的初筛能够给工作人员提供可供量化分析能力。 工作人员通过量化分析模块能够对相应的事件进行分析工作。同时残差值的可定义为灵活应对分析需求提供便利条件。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09