大数据无疑是现在最引人瞩目的词汇。但是,谁坚持认为可以从这项技术中获利——而且如何获利?
过去10年中,在经历了通信业和投资银行业的几个早期大数据项目后,我总结这个新兴技术最适合用在像股票市场和供应链这样的复杂系统中,获得更精准的解析。尤其是投资银行,这是最先采用大数据分析的行业之一。毕竟,那些专职赚钱的高管们热衷于省钱和创造财富。
在投资银行,为了更准确的推荐投资或买入股票,需要处理的文档(比如新闻、资产负债表等)数量太大而不能全人工处理。因此,合伙人倾向于简化分析过程,使用电子表格文档去完成大多数工作。而采用大数据技术处理大量信息可以有效性的降低风险,和以前相比,公司可以更好的进行分析和预测。
公司如何运用大数据赚钱呢?
通过大数据平台,股票市场的交易员和投资组合证券d经理可以处理大量的非结构化数据,来识别最值得投资的公司。
非结构化的公众信息,包括公司新闻、产品评论、供应商数据和价格表变更,可以以大数据的形式进行整合并建立数学模型,帮助交易员决定买入或卖出哪支股票。
一些按照上述方式运用大数据进行投资预测的企业,为了减少项目的前期投入使用云服务,比如Amazon的网络服务(AWS),从少量的服务器开始,获利后再扩大规模。我认识一个从大型投资银行辞职的定量分析师,他可以在6个月内、用有限的资金创建一个可盈利的大数据交易系统。
甚至在制造业,使用大数据可以提升预测能力。一个我曾经担当顾问的欧洲主要汽车制造商,建立了一个内部系统进行钢铁价格的可行性分析,确定在最合适的时间、以更优惠的价格购买原材料。该系统采用开源Java框架Hadoop,整合多个供应商的数据库、总量达到15Tb的信息,两年节省了1.6亿美元。
该项目成功的两个原因是:首先,该公司有足够的信息对所有供应商进行建模;其次,该项目节省的原材料成本大大超过了建立系统的费用。
公司如何运用大数据赔钱呢?
但是,不是每个大数据项目运用这种方法都会成功。有时,公司运用大数据,赔钱和赚钱的概率相差无几。大数据失败的早期情况并不相同,但最普遍原因如:
开始时步子迈得太大:大数据不需要大预算。如果怀着投资多等于回报大的想法开始一个项目,往往会失败。在项目开始前,明智的做法是,分析在该技术上以有限的投入、在小范围内是否可以带来预期的收益。如果是,该项目随时可以扩大规模,保证规模越大利润越高。
低估人力需求:开始实施系统前,问自己一个简单的问题:没有恒定的人力支持,该大数据项目能够运作吗?如果答案是“不”,那么马上停止。建立一个不能以盈利模式进行维护的系统,意味着数百万的损失。
尝试推进自然语言处理:大数据的一个潜在承诺是,通过自然语言处理(NLP),将各领域的数据变得可读可写。这种想法是令人兴奋的——但在实际应用中没有进展。目前的自然语言处理有严格的限制,因为人工智能还不够先进——再过10年也可能不行。
现代大数据意味着可以节省费用,和过去的数据处理器相比简直是魔法。但在最初建立大数据项目时判断是否真的可以盈利,将不会浪费你的时间和资源。只有傻瓜才会冒进。
数据科学家Marco Visibelli从IBM辞职后创立了Kuldat公司,该公司运用大数据,对销售和市场前景进行可行性分析并呈现可能的结果。
数据分析咨询请扫描二维码
在当今以数据为导向的商业环境中,数据分析师的角色变得越来越重要。无论是揭示消费者行为的趋势,还是优化企业运营的效率,数据 ...
2024-11-17金融数学是一门充满挑战和机遇的专业,它将数学、统计学和金融学的知识有机结合,旨在培养能够运用数学和统计方法解决复杂金融市 ...
2024-11-16在信息时代的浪潮中,大数据已成为推动创新的重要力量。无论是在商业、医疗、金融,还是在日常生活中,大数据扮演的角色都愈发举 ...
2024-11-16随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15在快速演变的数字时代,数据分析已成为多个行业的核心驱动力。无论你是刚刚踏入数据分析领域,还是寻求进一步发展的专业人士,理 ...
2024-11-15Python作为一种通用编程语言,以其简单易学、功能强大等特点,成为众多领域的核心技术驱动者。无论是初学者还是有经验的编程人员 ...
2024-11-15在当今数据驱动的世界中,数据分析已成为许多行业的基础。无论是商业决策,产品开发,还是市场策略优化,数据分析都扮演着至关重 ...
2024-11-15数据分析作为现代商业和研究领域不可或缺的一部分,吸引了越来越多的初学者。然而,自学数据分析的过程中,初学者常常会遇到许多 ...
2024-11-15在当今的数据驱动世界中,机器学习方法在数据挖掘与分析中扮演着核心角色。这些方法通过从数据中学习模式和规律来构建模型,实现 ...
2024-11-15随着数据在各个行业的重要性日益增加,数据分析师在商业和技术领域的角色变得至关重要。其核心职责之一便是通过数据可视化,将复 ...
2024-11-15数据分析师的职责不仅仅局限于解析数据和得出结论,更在于将这些复杂的信息转换为清晰、易懂且具有影响力的沟通。良好的沟通能力 ...
2024-11-15数字化转型是企业提升竞争力和实现可持续发展的关键路径。面对快速变化的市场环境,以及技术的飞速发展,企业在数字化转型过程中 ...
2024-11-15CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14在当今高速发展的技术环境下,企业正在面临前所未有的机遇和挑战。数字化转型已成为企业保持竞争力和应对市场变化的必由之路。要 ...
2024-11-13