
随机森林(RF, RandomForest)介绍
随机森林(RF, RandomForest)包含多个决策树的分类器,并且其输出的类别是由个别树输出的类别的众数而定。通过自助法(boot-strap)重采样技术,不断生成训练样本和测试样本,由训练样本生成多个分类树组成的随机森林,测试数据的分类结果按分类树投票多少形成的分数而定。
随机森林以随机的方式建立一个森林,森林里有很多决策树,且每棵树之间无关联,当有一个新样本进入后,让森林中每棵决策树分别各自独立判断,看这个样本应该属于哪一类(对于分类算法)。然后看哪一类被选择最多,就选择预测此样本为那一类。
→ 每个节点处随机选择特征进行分支。
利用bootstrap重抽样方法,从原始样本中抽出多个样本,对每个bootstrap样本进行决策树建模。
主要思想是bagging并行算法,用很多弱模型组合出一种强模型。
建立每棵决策树的过程中,有2点:采样与完全分裂。首先是两个随机采样的过程,RF要对输入数据进行一下行(样本)、列(特征)采样,对于行采样(样本)采用有放回的方式,也就是在采样得到的样本中可以有重复。从M个特征中(列采样)出m特征。之后就是用完全分裂的方式建立出决策树。
一般决策树会剪枝,但这里采用随机化,就算不剪枝也不会出现“过拟合”现象。
1.有N个样本,则有放回地随机选择N个样本(每次取1个,放回抽样)。这选择好了的N各样本用来训练一个决策树,作为决策树根节点处的样本。
2.当每个样本有M个属性时,在决策树的每个节点需要分裂时,随机从这M个属性中选取出m个属性,满足条件m<<M。然后从这m个属性中采用某种策略(如信息增益)来选择一个属性,作为该节点的分裂属性。
3.决策树形成过程中,每个节点都要按照步骤2来分裂(很容易理解,如果下一次该节点选出来的那一个属性是刚刚父节点分裂时用过的属性,则该节点已经达到了叶子节点,无需继续分裂)。一直到不能再分裂为止,注意整个决策树形成过程中没有剪枝。
4.按步骤1-3建立大量决策树,如此形成RF。
(从上面步骤可以看出,RF的随机性体现在每棵树的训练样本是随机的,树中每个节点的分类属性也是随机选择的,有了这两个随机的保证,RF就不会产生过拟合现象了)
随机森林有2个重要参数:一是树节点预选变量个数,二是随机森林中树的个数(m的大小)
RF中有2个要人为控制的参数:1.森林中树的数量,一般建议取很大;2.m的大小,推荐m的值为M的均方根。
优点:
1.很多的数据集上表现良好;
2.能处理高维度数据,并且不用做特征选择;
3.训练完后,能够给出那些feature比较重要;
4.训练速度快,容易并行化计算。
缺点:
1.在噪音较大的分类或回归问题上会出现过拟合现象;
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08LSTM 输出不确定的成因、影响与应对策略 长短期记忆网络(LSTM)作为循环神经网络(RNN)的一种变体,凭借独特的门控机制,在 ...
2025-07-07统计学方法在市场调研数据中的深度应用 市场调研是企业洞察市场动态、了解消费者需求的重要途径,而统计学方法则是市场调研数 ...
2025-07-07CDA数据分析师证书考试全攻略 在数字化浪潮席卷全球的当下,数据已成为企业决策、行业发展的核心驱动力,数据分析师也因此成为 ...
2025-07-07剖析 CDA 数据分析师考试题型:解锁高效备考与答题策略 CDA(Certified Data Analyst)数据分析师考试作为衡量数据专业能力的 ...
2025-07-04SQL Server 字符串截取转日期:解锁数据处理的关键技能 在数据处理与分析工作中,数据格式的规范性是保证后续分析准确性的基础 ...
2025-07-04CDA 数据分析师视角:从数据迷雾中探寻商业真相 在数字化浪潮席卷全球的今天,数据已成为企业决策的核心驱动力,CDA(Certifie ...
2025-07-04CDA 数据分析师:开启数据职业发展新征程 在数据成为核心生产要素的今天,数据分析师的职业价值愈发凸显。CDA(Certified D ...
2025-07-03