数据分析流程这么长,产品经理如何一人搞定?
我2002年入行,那个时候还没有“产品经理”这个词,我的主要工作是为业务部门跑数据并且制作报表, 就是传说中“跑数据”、“做报表”的那个苦逼数据仓库工程师。
2007年之前我一直在为制造型企业建数据仓库,直到去了美国的之后,才开始进入到互联网,服务过两家公司,Linkedin 4年和 eBay 3年多。天天和产品经理、数据分析师在一起,帮助他们准备需要的数据、分析产品和用户,最后把分析的结果做到产品里面去。走上了数据采集 – 处理 – 清洗 – 展现 – 分析 – 数据产品的道路。
一个互联网公司要做好 Growth,就要做好产品体验。想要做好产品体验,产品经理第一需要的就是数据分析支持,有了数据才能开始Growth Hacker…此处省去10000字关于 Growth Hacker。
对于产品经理而言,他们关心的是什么呢?产品经理对网站或者是 APP 的 UI 、UX 是最熟悉的,因为他们参与了其中的设计:用户应该怎么交互,有哪些交互上面不方便的地方,每一级菜单 用户交互的流程,交互上的死角和边界;然后是设计,UI 是不是够简洁,美观,吸引人?哪些链接需要加强用户关注度,哪些链接需要减低用户的关注度。总而言之,都是为了用户体验,好的用户体验才能带来用户活跃,提高增长。
比如网页端( APP 端同理):
一个合格的数据分析师要能够制作可视化的报表,能够用不同的图形表达分析的结果。比如下面的可视化报表:
分析师构建报表的数据从哪里来呢?在数据库。
数据库里面有成百上千种表,一个合格的数据分析师首要的是知道数据在哪里?存在哪些表里面:
“哪里有页面浏览的表,哪里有搜索的表,哪里有广告的展现,点击的表,哪里有手机用户事件的表,哪里有用户属性的表,这些表每个字段对应了哪些维度和指标,哪里有宏观的已经计算好的指标,哪里有微观的详细的用户事件,还有很多过滤条件等等。”
对于一个刚入职的分析师,即使是有专人带的情况下,也是需要一定的时间才能成长的,不然很可能提供了错误的数据, 导致了错误的决策。
如下图是数据分析师们熟悉的数据库结构,可以帮助他们迅速的找到表的定义和字段的定义:
数据工程师设计并构建了上面的数据库模型,同时他们也要负责源源不断的把数据插入到这些数据库的表中,这些数据可以存在数据库里面,也可以存在 Hadoop 的数据集群中。
可是数据库里面存了所有我们能够支持数据分析师的数据吗? 当分析师在数据库里面找不到数据的时候, 就需要数据工程师需要从各种地方重新调取(此处省略关于实时数据流,Hadoop 集群,ETL,数据聚合等等关于技术的10000字)。
总之如果要得到没有事先收集的用户行为事件数据,就要在前端的代码里面埋事件代码,也就是在用户事件产生的源头埋点,才能在服务端得到相应的日志数据。
在技术上 Linkedin 为互联网日志做出了贡献,开源了 Kafka。什么是 kafka?就是可以非常实时的接受客户端发过来的实时事件数据并生成日志数据,然后发送到后端服务器上。比如腾讯,今日头条,新浪等等互联网公司都用 Kafka 收集日志的。
日志是这个样子的:
以上的这些都是数据,不同的人看到的角度是不同的。如下图:
从工程的角度出发,数据处理的顺序是这样的:
第一步:先埋点
第二步:收集日志
第三步:建立数据库
第四步:分析数据
第五步:得出产品经理要的分析结果
看起来这个链条很长,但是GrowingIO可以把它缩短,如何缩短?在一开始就从产品经理的角度来看这个问题。
从产品经理的角度出发,数据处理的顺序是这样的:
第一步:产品经理直接圈选,看数据结果。
在保存了用户事件之后,还可以自由的创造看板。如下图
产品经理和数据分析师可以在很短的时间能创建出看板,从事件的定义到产生分析结果,只要短短几秒钟,而且还追溯了过去7天的历史数据。
不仅仅如此,GrowingIO 还提供用户分群、用户细查、事件留存和数据下载等高级功能。
我们现在通过云端软件服务形式,制作了一个简单容易上手的系统,可以让初创公司快速地,低成本地获得只有大公司才玩得起的实时大数据分析系统。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31提到数据分析,你脑海里可能会浮现出一群“数字控”抱着电脑,在海量数据里疯狂敲代码的画面。但事实是,数据分析并没有你想象的 ...
2024-12-31关于数据分析师是否会成为失业高危职业,近年来的讨论层出不穷。在这个快速变化的时代,技术进步让人既兴奋又不安。今天,我们从 ...
2024-12-30