京公网安备 11010802034615号
经营许可证编号:京B2-20210330
在2016世界移动通信大会上,一项神秘的研究成果引起国际业界的关注。在此之前,业界很难想象利用移动互联网用户的后台数据,可以预测人类的行动规律。
而这项研究的始创者是一位只有32岁的小伙子——国防科技大学信息系统与管理学院讲师吕欣。
让信息告诉我们人在哪
“人类的行为有一定规律性,可以被预测出来。”吕欣提起他的研究非常兴奋,“在一些重大突发事件中,预测人类的行动规律可以帮助我们定位人群,打通救援的第一道关口。”
2010年2月,正在德国参加欧洲物理学会议的博士生吕欣接到来自海地的电话。找他的是瑞典卡罗林斯卡学院的同学、一位医学博士,当时正在海地参加震后救援。这场地震造成22万人死亡,超过60万人短时间内逃到其他地区。由于当地社会管理落后,国际救援组织难以获知灾民去向并组织灾后救援行动。
“能否运用你在数据挖掘上的能力帮助我们找到他们?”这位同学告诉吕欣,当地主要手机运营商可以向救援组织提供300万用户地震前后约10亿条手机定位数据。
从数以亿计的手机信息中找出难民去向,显然不是易事。“当时,学术界一般认为自然灾害中人群移动行为是高度不确定的,试图从浩如烟海的数据中发现震后人群的移动规律,的确是一次不可思议的探索。”吕欣说,他与国外学者展开合作攻关,通过多次数据整理、分析得出结论,难民通常会选择去以往社会关系较为密切的地方,如亲戚朋友家、以前常去的公园等。事实证明,即便是在严重灾害发生后,人类的行为也并不是慌乱而不可预测的,相反却是非常理性并有迹可循的。
“分析采集大量历史数据可以预测人类的行为规律。”吕欣为这项发现欢欣鼓舞。最终,他的研究成果成功描述了地震前后海地灾区难民的人口流动信息,从而为国际援助组织和管理决策者提供了极为有效的决策支持。
以海地灾后手机数据分析为起点,吕欣及其合作者积极参与了2013年孟加拉国台风救灾、2014年西非埃博拉病毒防控、2015年尼泊尔大地震救灾等重大灾害救援与管理,生成的报告得到了当地政府和联合国相关组织的高度重视,被联合国人口基金会、联合国人道事务办公室等采用。
网络抽样可以更优化
2006年,吕欣以四川大学管理科学专业第二名的成绩被保送至国防科大信息系统与管理学院,师从管理学著名专家谭跃进教授,主要开展复杂网络方面的研究。复杂网络,就是在庞大复杂的网络环境中找到维系网络关系的核心节点。
2009年,吕欣赴瑞典卡罗林斯卡学院攻读博士学位,并在斯德哥尔摩大学社会学系担任助理研究员。经过缜密考虑,他转向研究网络数据挖掘与分析技术,主攻网络抽样方法。主要针对高危、特殊人群,通过他们在社交关系中的特点进行抽样分析,这对公共安全和网络安全工作来说是一项巨大的突破。
网络抽样作为比较成熟的网络数据挖掘方法,已经在相关领域得到普遍承认和广泛应用。然而,实际做好抽样不仅限于了解被抽样群体,而是要通过少数人群了解多数人群,其中涉及很专业的数学算法和计算机知识。
“因为以往做网络抽样时,很多假设条件在现实中根本不满足,就会导致推断存在误差,甚至与真实情况相去甚远。”吕欣解释说,“实际上,我做了一项改进方法,把推测更加逼近真实值的工作,大大优化了统计方法。”
短短几年时间,吕欣取得了一系列突破:在国际上首次对网络抽样方法的统计假设提出质疑,并采用在线网络数据对这项研究的偏差进行综合评估,在此基础上独立开发出一种使用中心网络数据的新方法,避免了传统方法的局限性。他还设计开发了国际上首个在线社会网络调查系统,关于Twitter在线社会网络挖掘技术的研究成果,在所有同时期的9.4万多篇论文中,其影响力位列前4%。
通过吕欣的一系列创新性改进,使用社会网络可以较容易地调查和发现以往研究人员难以接触的社会群体,如吸毒者等。并能通过有限的调查样本对总体情况进行估计,从而为公共安全、网络检测和控制等提供宝贵信息。该方法目前已在世界范围内得到广泛应用。
创新路上永无止境
将大数据分析成果应用于应急救援、社会管理,这只是吕欣科研工作中的一小部分。让大数据服务国防,为未来战争插上信息化翅膀,这是吕欣的强军梦。
“体系对抗、联合作战、信息化战争都会产生大量数据,如通信、侦查、人员、装备、指挥控制、火力对抗等等。只有全面、准确、及时地把握战场态势的发展变化,从庞大的数据中挖掘出对敌的关键节点,才能高效地组织对抗,破解战争迷雾,实现战争的精确设计。”吕欣说。
从走进国防科大的那一天开始,吕欣就高度关注网络理论的实际应用,创新地提出了战术通信网络时空演化模型、信息远距离传播算法以及网络最短路径节点合并算法,并在复杂网络抗毁性研究上做了部分工作,其战术通信网络模型的研究在我军一些部门已经得到应用。“高智慧、无人化将是未来战争的主要特点,大数据技术在完成超越传统指挥员反应能力的战场应对中大有可为。”吕欣认为。
2013年,吕欣在人类移动行为动力学及轨迹可预测性研究上取得突出成果,成功将大数据分析方法应用到重大自然灾害事件的应急管理中,开发出一套用于人群移动轨迹预测的马尔科夫模型。成果在《Nature》《PNAS》等国外高水平期刊上得以发表,成为学校首位先后两次在国际顶尖学术期刊上发表文章的学者。国外同行极力挽留他留下来工作,美国圣塔菲研究所等顶级科研机构也向他发出邀请。他都婉言拒绝,“无论何时,只要祖国需要,我就义无反顾”。回校后,他积极参与到军队相关任务攻关中,为总部决策提供了关键技术支撑。
为把研究成果服务到实际工作中,吕欣还积极参与国际公益活动。通过分析手机数据,定位人流移动,为自然灾害管理提供免费、及时、有效的决策支持。因为时差的关系,吕欣往往是在半夜收到国外合作者发来的灾区数据。为了加快研究进度、高效完成数据整理和分析,他经常连续把自己关在实验室,最终保证在12小时内完成数据分析和提交首份报告,并及时进行数据和报告的更新,为国际救援抢到了宝贵的黄金时间。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
尊敬的考生: 您好! 我们诚挚通知您,CDA Level III 考试大纲将于 2025 年 12 月 31 日实施重大更新,并正式启用,2026年3月考 ...
2025-12-31“字如其人”的传统认知,让不少“手残党”在需要签名的场景中倍感尴尬——商务签约时的签名歪歪扭扭,朋友聚会的签名墙不敢落笔 ...
2025-12-31在多元统计分析的因子分析中,“得分系数”是连接原始观测指标与潜在因子的关键纽带,其核心作用是将多个相关性较高的原始指标, ...
2025-12-31对CDA(Certified Data Analyst)数据分析师而言,高质量的数据是开展后续分析、挖掘业务价值的基础,而数据采集作为数据链路的 ...
2025-12-31在中介效应分析(或路径分析)中,间接效应是衡量“自变量通过中介变量影响因变量”这一间接路径强度与方向的核心指标。不同于直 ...
2025-12-30数据透视表是数据分析中高效汇总、多维度分析数据的核心工具,能快速将杂乱数据转化为结构化的汇总报表。在实际分析场景中,我们 ...
2025-12-30在金融投资、商业运营、用户增长等数据密集型领域,量化策略凭借“数据驱动、逻辑可验证、执行标准化”的优势,成为企业提升决策 ...
2025-12-30CDA(Certified Data Analyst),是在数字经济大背景和人工智能时代趋势下,源自中国,走向世界,面向全行业的专业技能认证,旨 ...
2025-12-29在数据分析领域,周期性是时间序列数据的重要特征之一——它指数据在一定时间间隔内重复出现的规律,广泛存在于经济、金融、气象 ...
2025-12-29数据分析师的核心价值在于将海量数据转化为可落地的商业洞察,而高效的工具则是实现这一价值的关键载体。从数据采集、清洗整理, ...
2025-12-29在金融、零售、互联网等数据密集型行业,量化策略已成为企业提升决策效率、挖掘商业价值的核心工具。CDA(Certified Data Analys ...
2025-12-29CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-26在数字化转型浪潮下,审计行业正经历从“传统手工审计”向“大数据智能审计”的深刻变革。教育部发布的《大数据与审计专业教学标 ...
2025-12-26统计学作为数学的重要分支,是连接数据与决策的桥梁。随着数据规模的爆炸式增长和复杂问题的涌现,传统统计方法已难以应对高维、 ...
2025-12-26数字化浪潮席卷全球,数据已成为企业核心生产要素,“用数据说话、用数据决策”成为企业生存与发展的核心逻辑。在这一背景下,CD ...
2025-12-26箱线图(Box Plot)作为数据分布可视化的核心工具,凭借简洁的结构直观呈现数据的中位数、四分位数、异常值等关键信息,广泛应用 ...
2025-12-25在数据驱动决策的时代,基于历史数据进行精准预测已成为企业核心需求——无论是预测未来销售额、客户流失概率,还是产品需求趋势 ...
2025-12-25在数据驱动业务的实践中,CDA(Certified Data Analyst)数据分析师的核心工作,本质上是通过“指标”这一数据语言,解读业务现 ...
2025-12-25在金融行业的数字化转型进程中,SQL作为数据处理与分析的核心工具,贯穿于零售银行、证券交易、保险理赔、支付结算等全业务链条 ...
2025-12-24在数据分析领域,假设检验是验证“数据差异是否显著”的核心工具,而独立样本t检验与卡方检验则是其中最常用的两种方法。很多初 ...
2025-12-24