大数据的关键不是“大”,而是你真的需要它吗?
诸如我们听到的、看到的和正在自觉或不自觉地参与的,大数据已成为一项大工程,它无处不在。我们对待它就像在迎接自己的终生伴侣,兴奋之情溢于言表。每个人都在想:“嘿,大数据时代来了,我能从中得到什么好处呢?”从社交媒体、初创公司到北京的中关村,人们都在研究和部署大数据。
但是,正如前面我们提到的,大数据不是无源之水,你需要一个充足的理由来为它打开大门,让它进入你的世界;同时,你还需要为此付出不菲的代价。大多数公司缺乏预算,它们花不了大价钱来部署大数据技术解决方案,也请不起相关团队和大数据工程师。
大数据首先是一项产业,根据一份报告显示,2012年大数据带动了全球近300亿美元的IT支出,预计再过4年这个数字将超过2500亿美元。还有许多新兴国家难以预料的市场空间没有计算在内。要知道,这几乎是一个中等发达国家的全年国内经济总产值了。
那些使用大数据的辉煌案例到处都是,但距离某些特定人群总是如此遥远。比如,脸书的推广人员骄傲地说,他们每天要存储大约100TB的用户数据;美国国家安全局(NSA)每天要处理约24TB的数据。惊人的数字!确实令我们印象深刻。可是处理这些数据所需要的成本是多少呢?根据一项公开资料显示,NSA需要为45天的数据存储服务支付超过百万美元的费用,这个成本还在继续增加。在我几年的走访中,大多数公司的CIO也对我说,他们的预算支付不起大数据部署的成本。
所以,这是昂贵的门槛——公司如果想获得大数据服务,第一件要解决的事情就是提供充足的财务预算。
没钱?对不起,这不是卖白菜,也不是批发廉价商品或请几个经理人那么简单。因此我经常听到人们抱怨:“大数据太贵了!”个人和企业都在仰天叹息,但同时又充满渴望。问题是,你真的需要它吗?
数据存储和处理的成本如此之高,成本变成了阻碍每一个人拥抱大数据的最大障碍,就像其他一切新生事物一样。以至于我们普通人——中小企业需要寻求其他的解决方案,让规模较小的公司和个体不被“大数据”拒之门外。
方案一:大数据的关键不是“大”。
大数据就一定“大”吗?虽然全球最大的科技公司都需要和PB级规模的数据打交道,它们当之无愧地成为对海量数据处理达到星级服务的用户。然而,我们的研究也表明,另外有95%的公司通常只需要使用0.5TB到40TB的数据,甚至更少。
脸书和NSA的故事并不能拿来作为普及版案例,它们不是常态。事实是,大公司的方案没有必要成为中小公司效仿的版本。在全美有5万多家公司的员工只有20到500人,它们大部分都有解决数据问题的需求,但它们并没有向脸书和NSA看齐,去建立一个成本高昂的数据帝国。
所以你看到,大数据市场最大的需求并不是那些居于世界前500强的大公司,而是排名在500到5万之间的公司。我们为何只关注那些极少数的例外,而忽视了普通的需求者呢?
将自己排除在PB级规模数据需求的用户之外,我们才有可能找到真正的方案。当大数据向我们走来时,我们应尽可能选择一个较小的接口,一样能享受同等的服务和便捷。
方案二:确定你是否真的需要它。
在向人们普及大数据时我经常在想,如果我们改变了大数据的定义,会发生什么?换一个角度,用更宏观的思维来思考它,你就能够跳出来,站在自我需求的角度去进行思考。
我们不妨这样考虑:“大数据是一种主观状态,它描述的是一个公司(个人)的基础架构(现状)无法满足其对于数据处理的需求时的情形。”
从某种意义上来说,这个判断是“灰色”的,可能没有人们想象的那么灿烂美好。没有需求就不需要大数据。不过它更贴近事实:不是所有人都必须与大数据时代接轨,当你看到它扑面而来时,你要做的第一件事是确定自己是否真的需要它,然后再采取恰当的行动。
数据分析咨询请扫描二维码
统计学基础 - 理解统计学的基本概念和方法是数据分析师必备的技能之一。统计学为他们提供了处理数据、进行推断和建模的基础。 数 ...
2024-11-25数据分析师在如今信息爆炸的时代扮演着至关重要的角色。他们不仅需要具备扎实的数据分析技能,还需要不断学习和适应不断发展的技 ...
2024-11-25数据分析师的工作职责涉及多个关键方面,从数据的获取到处理、分析再到可视化,旨在为企业的决策提供有力支持。让我们深入了解数 ...
2024-11-25数据分析师:洞察力量的引擎 数据分析师的兴起 数据分析师行业目前正处于快速发展阶段,市场需求持续增长,薪资水平也有所提升。 ...
2024-11-25数据收集与整理 - 从各种来源收集数据,清洗和整理以确保数据质量和可用性。 数据分析与建模 - 运用统计学方法和机器学习模型对 ...
2024-11-25数据分析是当今社会中不可或缺的一项技能,涵盖了广泛的工具和技术。其中,掌握各种数据处理函数对于数据分析师至关重要。本文将 ...
2024-11-25“大数据治理”是一个涵盖广泛的复杂概念,其核心在于确保大规模、多样化的数据资源能够被有效管理和利用。不仅涉及数据的采集、 ...
2024-11-25一、引言 背景介绍 随着信息技术的快速发展和互联网的普及,大数据已经成为现代社会的重要资产。大数据的兴起不仅推动了各行各业 ...
2024-11-25《Python数据分析极简入门》 第2节 7 Pandas分组聚合 分组聚合(group by)顾名思义就是分2步: 先分组:根据某列数据的值进行 ...
2024-11-25数据分析需要学习的内容非常广泛,涵盖了从理论知识到实际技能的多个方面。以下是数据分析所需学习的主要内容: 数学和统计学 ...
2024-11-24数据分析师需要具备一系列多方面的技能和能力,以应对复杂的数据分析任务和业务需求。以下是数据分析师所需的主要能力: 统计 ...
2024-11-24数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。以下是根据我搜索到的资料整理出的数据分析师需 ...
2024-11-24《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22