
深度学习不能跟人工智能画上等号
近日百度宣布在一部超算系统Minwa上部署了#深度学习#算法,进而在ImageNet图像识别测试中取得了只有5.98%错误率的新纪录。无独有偶,Facebook也刚刚宣布对部分深度学习代码开源,以推进这项技术在业界的普及。深度学习这个概念越来越频繁地出现在媒体报道中,那么究竟什么是“深度学习”,它又对我们的生活有什么影响与好处呢?
让计算机拥有接近人类的智能水平是IT行业最伟大,也是最难实现的梦想。虽然科幻作品中早就出现了匹敌甚至远超人类智能水平的计算机、机器人,但尴尬的是现实中的计算机技术即使经过六十余年的指数发展也仍然与真正的“智能”相去甚远。甚至一只小鸟的大脑都要比现时最强大的超级计算机聪明许多。虽然计算机拥有恐怖的计算能力、数据存储空间,但是一直以来这些能力却难以用来模拟复杂的思维,而只能执行既定的运算任务。
“深度学习”是通往#人工智能#的漫漫长路上的一项重要的技术。“深度”是一种专业术语,表示将某种复杂问题分解成简单问题的层数。深度学习可以理解为将一项复杂的概念抽象为多层简单概念的叠加,然后通过简单概念的判断和学习来理解复杂的整体。例如让计算机从一张图片上识别出一只小狗,过去的做法是由人给图片加注“图中有萌犬一只”之类的标签,然后计算机根据标签来进行分类。基于深度学习算法的系统的做法完全不同:给计算机大量的有小狗内容的图像,然后系统会自动从这些图像中总结规律:所有的图像中都有一团物体、这些物体都有几条腿、有尾巴、有脑袋、脑袋上有两只可爱的眼睛……经过大量的训练,计算机最终总结出“小狗”的图像特征,之后就可以自动识别出图像是否包含这些特征。这一学习过程不需要人类的太多参与,基本上是自动化的。与过去简单的“标签识别方式”相比,深度学习是对动物大脑神经网络的一种简化模拟,离“智能”的目标更近了一步。
深度学习技术对现代IT产业意义非凡。随着PC、智能手机的广泛普及,互联网上产生了大量需要计算机来处理的数据。用户对数据处理的水平要求也不断增加。诸如复杂图像识别、语音识别、自动翻译等应用的需求越来越强烈,而这些正是深度学习技术大显身手的时候。大型计算机网络可以通过海量数据的训练不断提升自己的认知水平,进而完成许多过去只能由人工完成的工作。
典型的例子就是谷歌、苹果和微软等企业推出的智能语音助手服务。这些服务将用户的语音指令发送到数据中心,并由中心的计算集群进行分析、处理,再将结果传回终端设备。这一过程中最困难的一步就是识别用户指令的实际含义,传统的算法在这里很难起到作用,解决方案就是深度学习。使用这些服务的用户越多、系统得到的训练越多,整体服务质量就会越高。类似的应用还包括谷歌、百度等提供的智能识图服务、在线翻译服务,电商网站的机器人客服,以及堪称革命的无人驾驶技术等。
由于深度学习需要海量数据作为训练系统的“材料”,那些拥有大量用户资源的大企业在这一方面无疑有先天优势。目前,全球范围内发展这一技术的领跑者就是谷歌、Facebook、苹果、百度、腾讯等企业。其中,谷歌、苹果的相关服务,尤其是语音助手服务已经部署较长时间,也获得了大量的用户反馈。国内企业中,百度在这一领域耕耘较深,不仅模仿谷歌的“谷歌大脑”计划建立了“百度大脑”团队,还在百度识图、百度翻译等服务中应用了深度学习技术并取得了不错的成果。不过从实际使用体验来说各大企业的深度学习技术仍处于发展初期阶段,服务质量与用户的心理预期仍相去甚远。苹果的Siri上线后就经常被用户“调戏”,总是难以真正理解操作者的意图;百度测试上线图像内容自动识别服务后也陷入类似的尴尬:由于识别率较差,多数用户仅仅是将它当作是娱乐消遣的玩具尝鲜而已。总之,深度学习离改变我们的生活还有很长的路要走。
最近几年,基于GPU运算的深度学习算法成为这一领域的大趋势。此次百度创下新纪录的图像识别系统即是运行在GPU服务器集群上。GPU运算速度的快速提升也让深度学习技术有了硬件层面的有力支持。业界对这一技术的重视也鼓励研究者不断开发出更优秀的算法与模型。预计未来数年内,深度学习技术就将在多个领域真正实用化,造福广大消费者。虽然深度学习离真正的人工智能仍有较大距离,但它总算能让计算机有一点“聪明”的样子了。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29