
深度学习不能跟人工智能画上等号
近日百度宣布在一部超算系统Minwa上部署了#深度学习#算法,进而在ImageNet图像识别测试中取得了只有5.98%错误率的新纪录。无独有偶,Facebook也刚刚宣布对部分深度学习代码开源,以推进这项技术在业界的普及。深度学习这个概念越来越频繁地出现在媒体报道中,那么究竟什么是“深度学习”,它又对我们的生活有什么影响与好处呢?
让计算机拥有接近人类的智能水平是IT行业最伟大,也是最难实现的梦想。虽然科幻作品中早就出现了匹敌甚至远超人类智能水平的计算机、机器人,但尴尬的是现实中的计算机技术即使经过六十余年的指数发展也仍然与真正的“智能”相去甚远。甚至一只小鸟的大脑都要比现时最强大的超级计算机聪明许多。虽然计算机拥有恐怖的计算能力、数据存储空间,但是一直以来这些能力却难以用来模拟复杂的思维,而只能执行既定的运算任务。
“深度学习”是通往#人工智能#的漫漫长路上的一项重要的技术。“深度”是一种专业术语,表示将某种复杂问题分解成简单问题的层数。深度学习可以理解为将一项复杂的概念抽象为多层简单概念的叠加,然后通过简单概念的判断和学习来理解复杂的整体。例如让计算机从一张图片上识别出一只小狗,过去的做法是由人给图片加注“图中有萌犬一只”之类的标签,然后计算机根据标签来进行分类。基于深度学习算法的系统的做法完全不同:给计算机大量的有小狗内容的图像,然后系统会自动从这些图像中总结规律:所有的图像中都有一团物体、这些物体都有几条腿、有尾巴、有脑袋、脑袋上有两只可爱的眼睛……经过大量的训练,计算机最终总结出“小狗”的图像特征,之后就可以自动识别出图像是否包含这些特征。这一学习过程不需要人类的太多参与,基本上是自动化的。与过去简单的“标签识别方式”相比,深度学习是对动物大脑神经网络的一种简化模拟,离“智能”的目标更近了一步。
深度学习技术对现代IT产业意义非凡。随着PC、智能手机的广泛普及,互联网上产生了大量需要计算机来处理的数据。用户对数据处理的水平要求也不断增加。诸如复杂图像识别、语音识别、自动翻译等应用的需求越来越强烈,而这些正是深度学习技术大显身手的时候。大型计算机网络可以通过海量数据的训练不断提升自己的认知水平,进而完成许多过去只能由人工完成的工作。
典型的例子就是谷歌、苹果和微软等企业推出的智能语音助手服务。这些服务将用户的语音指令发送到数据中心,并由中心的计算集群进行分析、处理,再将结果传回终端设备。这一过程中最困难的一步就是识别用户指令的实际含义,传统的算法在这里很难起到作用,解决方案就是深度学习。使用这些服务的用户越多、系统得到的训练越多,整体服务质量就会越高。类似的应用还包括谷歌、百度等提供的智能识图服务、在线翻译服务,电商网站的机器人客服,以及堪称革命的无人驾驶技术等。
由于深度学习需要海量数据作为训练系统的“材料”,那些拥有大量用户资源的大企业在这一方面无疑有先天优势。目前,全球范围内发展这一技术的领跑者就是谷歌、Facebook、苹果、百度、腾讯等企业。其中,谷歌、苹果的相关服务,尤其是语音助手服务已经部署较长时间,也获得了大量的用户反馈。国内企业中,百度在这一领域耕耘较深,不仅模仿谷歌的“谷歌大脑”计划建立了“百度大脑”团队,还在百度识图、百度翻译等服务中应用了深度学习技术并取得了不错的成果。不过从实际使用体验来说各大企业的深度学习技术仍处于发展初期阶段,服务质量与用户的心理预期仍相去甚远。苹果的Siri上线后就经常被用户“调戏”,总是难以真正理解操作者的意图;百度测试上线图像内容自动识别服务后也陷入类似的尴尬:由于识别率较差,多数用户仅仅是将它当作是娱乐消遣的玩具尝鲜而已。总之,深度学习离改变我们的生活还有很长的路要走。
最近几年,基于GPU运算的深度学习算法成为这一领域的大趋势。此次百度创下新纪录的图像识别系统即是运行在GPU服务器集群上。GPU运算速度的快速提升也让深度学习技术有了硬件层面的有力支持。业界对这一技术的重视也鼓励研究者不断开发出更优秀的算法与模型。预计未来数年内,深度学习技术就将在多个领域真正实用化,造福广大消费者。虽然深度学习离真正的人工智能仍有较大距离,但它总算能让计算机有一点“聪明”的样子了。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04