
几招教你如何在R中获取数据进行分析
数据分析师干什么?数据分析师的主要职责包括寻找、检索、整理和传递从数据中来的见解。数据分析师也帮助报告和发现隐藏在数据潜在产品中的有意义的见解。从商业指标到用户行为和产品表现,他们负责获取、分析和报告范围的数据。
举个例子,职责可能涵盖:
书写查询从数据库中检索数据,和正确的利益相关者分享数据
浏览用户行为来寻找可以用来提升公司产品表现的见解或趋势
解释A/B测试的结果,基于此结果做出产品推荐
在有(或无)正规教育的情况下这样成为数据分析师
作为一名数据分析师,具有分析(数学/统计和编程)、沟通能力(展示/数据可视化)、注重细节地解决问题的系统化途径、和在商业文案中应用它们的能力等强大的组合能力。下面我们概述了一些你可以学习一些新技能的途径。
网上有许多公开的数据集——它们是很好的资源,提供给你机会去建立有趣独立项目的组合。我们在Mortar的朋友建立了一个主要列表,收录了从当今这个领域最好的知名的一些数据科学家那里找到的有趣数据集。
如果机器学习更符合你的风格,Kaggle竞赛会是一个磨练你的技能和自我提升的好舞台(一些公司招聘时搜索Kaggle排行榜)。
如果你想通过数据可视化展示你的发现,你可以在像Many Eyes、Plot.ly或Blocks.io的网站上创建并与其他人分享有趣的可视化。
想展示你的新技能和项目,你可以通过GitHub pages、WordPress、Medium或其他网页或个人博客平台创建的网站来展示。
能使你获得面试的技能组合
优秀的技能组合应该展现一系列项目和你学过的技能范围
完美地,这些项目要展示你的:
在R语言、Pandas、Numpy、Scipy、Scikit-Learn包或者相关数据分析工具方面的实践经历
使用和整理大规模(太大而难以适合一个电子表格)、不相干的和(或)非结构化数据集的经历
机器学习和数据挖掘技术的知识
强大的问题解决、数学、统计和定量推理的技能
最重要的,这些项目应该展示你出色的沟通能力。特别地,显示你能分析复杂数据集,寻找有趣的见解,用正确的商业文案清晰而简洁地展示它们。
数据分析师的概念
视频:数据科学家是什么
了解数据科学家应该具有的能力。
视频:机器学习和无人驾驶汽车
了解谷歌的无人驾驶汽车怎样运用机器学习。
视频:模仿因子怎么通过Facebook传播
了解模仿因子和它们怎样在社交媒体中传播
视频:什么是
了解它是什么意思和它怎样用于数据分析。
以什么顺序学习?
技能
如果你有兴趣成为数据科学家,你应该在日常工作中胜任和能够运用以下技能。
编程
作为数据分析师,具有编程能力很重要。曾经很多次你使用过非编程工具,如Excel,但是最好和最常用的一些工具,如Pandas、Numpy,以及其他一些库,都是基于编程的。使用这些基于编程的工具,你能够做更深入、更高效的分析。由于流行度高,Python和R都是很好的入门编程语言。
统计学
最低要求,你应该能理解基本的统计描述和统计推断。你应该理解分布的不同类型,哪种统计检验适用于哪种文本,还要能够在面试中解释线性回归的基础知识。
机器学习
如果你有大量数据,机器学习中的技术是难以置信的强大。你需要用这些数据去预测未来,或者给出合适的建议。你应该懂得一些最常用的监督学习和非监督学习的算法(他们是两种不同类别的机器学习算法),比如k最近邻算法、支持向量机和k均值聚类。你可能不必懂得这些算法背后的理论和实现细节,但知道什么时候使用这些算法很重要。
数据清理
在理想的世界里,你面对的数据集是干净的、准备好进行分析的。然而,现实世界中,绝少是这样的。你的数据集很可能缺失数值、格式错误、或者输入错误。例如,让我们讨论一些日期,一些系统表示2014年9月1日为9.1.2014,其他一些系统会表示为09/01/2014。像这样的情况,你的数据清理技能会派上用场。
沟通和数据可视化
作为数据分析师,你的工作不仅要解释数据,还要同其他利益相关者高效交流你的发现,这样你就能帮他们做出数据提供的决策。许多利益相关者不会对你的分析背后的技术细节感兴趣,这就是为什么你能通过易于理解的途径交流和展示你的发现很重要。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10