
几招教你如何在R中获取数据进行分析
数据分析师干什么?数据分析师的主要职责包括寻找、检索、整理和传递从数据中来的见解。数据分析师也帮助报告和发现隐藏在数据潜在产品中的有意义的见解。从商业指标到用户行为和产品表现,他们负责获取、分析和报告范围的数据。
举个例子,职责可能涵盖:
书写查询从数据库中检索数据,和正确的利益相关者分享数据
浏览用户行为来寻找可以用来提升公司产品表现的见解或趋势
解释A/B测试的结果,基于此结果做出产品推荐
在有(或无)正规教育的情况下这样成为数据分析师
作为一名数据分析师,具有分析(数学/统计和编程)、沟通能力(展示/数据可视化)、注重细节地解决问题的系统化途径、和在商业文案中应用它们的能力等强大的组合能力。下面我们概述了一些你可以学习一些新技能的途径。
网上有许多公开的数据集——它们是很好的资源,提供给你机会去建立有趣独立项目的组合。我们在Mortar的朋友建立了一个主要列表,收录了从当今这个领域最好的知名的一些数据科学家那里找到的有趣数据集。
如果机器学习更符合你的风格,Kaggle竞赛会是一个磨练你的技能和自我提升的好舞台(一些公司招聘时搜索Kaggle排行榜)。
如果你想通过数据可视化展示你的发现,你可以在像Many Eyes、Plot.ly或Blocks.io的网站上创建并与其他人分享有趣的可视化。
想展示你的新技能和项目,你可以通过GitHub pages、WordPress、Medium或其他网页或个人博客平台创建的网站来展示。
能使你获得面试的技能组合
优秀的技能组合应该展现一系列项目和你学过的技能范围
完美地,这些项目要展示你的:
在R语言、Pandas、Numpy、Scipy、Scikit-Learn包或者相关数据分析工具方面的实践经历
使用和整理大规模(太大而难以适合一个电子表格)、不相干的和(或)非结构化数据集的经历
机器学习和数据挖掘技术的知识
强大的问题解决、数学、统计和定量推理的技能
最重要的,这些项目应该展示你出色的沟通能力。特别地,显示你能分析复杂数据集,寻找有趣的见解,用正确的商业文案清晰而简洁地展示它们。
数据分析师的概念
视频:数据科学家是什么
了解数据科学家应该具有的能力。
视频:机器学习和无人驾驶汽车
了解谷歌的无人驾驶汽车怎样运用机器学习。
视频:模仿因子怎么通过Facebook传播
了解模仿因子和它们怎样在社交媒体中传播
视频:什么是
了解它是什么意思和它怎样用于数据分析。
以什么顺序学习?
技能
如果你有兴趣成为数据科学家,你应该在日常工作中胜任和能够运用以下技能。
编程
作为数据分析师,具有编程能力很重要。曾经很多次你使用过非编程工具,如Excel,但是最好和最常用的一些工具,如Pandas、Numpy,以及其他一些库,都是基于编程的。使用这些基于编程的工具,你能够做更深入、更高效的分析。由于流行度高,Python和R都是很好的入门编程语言。
统计学
最低要求,你应该能理解基本的统计描述和统计推断。你应该理解分布的不同类型,哪种统计检验适用于哪种文本,还要能够在面试中解释线性回归的基础知识。
机器学习
如果你有大量数据,机器学习中的技术是难以置信的强大。你需要用这些数据去预测未来,或者给出合适的建议。你应该懂得一些最常用的监督学习和非监督学习的算法(他们是两种不同类别的机器学习算法),比如k最近邻算法、支持向量机和k均值聚类。你可能不必懂得这些算法背后的理论和实现细节,但知道什么时候使用这些算法很重要。
数据清理
在理想的世界里,你面对的数据集是干净的、准备好进行分析的。然而,现实世界中,绝少是这样的。你的数据集很可能缺失数值、格式错误、或者输入错误。例如,让我们讨论一些日期,一些系统表示2014年9月1日为9.1.2014,其他一些系统会表示为09/01/2014。像这样的情况,你的数据清理技能会派上用场。
沟通和数据可视化
作为数据分析师,你的工作不仅要解释数据,还要同其他利益相关者高效交流你的发现,这样你就能帮他们做出数据提供的决策。许多利益相关者不会对你的分析背后的技术细节感兴趣,这就是为什么你能通过易于理解的途径交流和展示你的发现很重要。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05