小白学数据分析之解析在线平高比
什么是在线平高比
在线平高比,也有叫做CCU比率的,即平均在线占最高在线比例,公式就是R=ACU/PCU。这个公式看似很简单,大家估计很多人都会使用,那么究竟这个公式要说明什么问题?在解释问题之前简单的把ACU和PCU说明一下,因为很多人还不清楚。
ACU平均同时在线人数
定义
统计当日所有统计时刻中总在线人数的平均值,即总的在线人数的和除以统计时刻数。比如:
在00:00:00————6000人在线
在00:10:00————6600人在线
在00:20:00————6900人在线
总在线人数之和19500人次,3个统计时刻,那么ACU=19500/3=6500人。至于PCU就是这样的统计数据中最大的值。比如上述的数据中PCU=6900。
ACU/PCU的预警值
ACU/PCU的预警值是0.5,也就说在一款游戏中我们能够接受的最低标准是0.5,低于0.5的标准就说明游戏存在比较大的问题。那么为什么必须是0.5?
首先我们来看CCU曲线图
我们都清楚在游戏中一天24小时,晚间是一般游戏的高峰时期,PCU也一般会在晚上出现,当然也有在下午的出现的时候,都不尽相同。这也就意味着一条CCU曲线必然是有很大的起伏和落差的。
CCU曲线绘制的前提是通过对每个统计时刻的数据进行汇总才能得到这条曲线,那么这样现在我们这样来做这条曲线,如下图:
我们看到了橘黄色的部分其实就是这一天所有统计时刻的人数总和,其实也就是橘黄色部分的面积,这是一个不规整的图形,显然如果我们要去计算这个图形的面积只能通过微积分解决(这也是微积分的定义和来源)。
那么说的这些和ACU有什么关系?
如我们所定义的,ACU是平均同时在线人数,是总人数/总的统计时刻,ACU的出现等于说把这个不规整的图形变成了一个长方形,长是统计的时刻,宽是ACU的值。
可以看到我们把原来不规整的图形变成了一个完整的长方形,ACU作为了基准线,那些在基准线以上的面积补充到了基准线以下的部分,从而构成了这个长方形。
至此,我们就可以开始解释为什么是0.5了。原因其实很简单,如果出现在了ACU基准线以上的部分越多,那么整体上的PCU表现就越好,进而我们也就发现了在24小时内玩家的上线活跃度是提升的,增高的。
但是实际当中情况不是这样的,更多的时候其实是一段时间走高的,比如晚上7点-12点这段时间的数据时走高的,这是PCU缓慢形成的时间区间。而同时我们在计算ACU时,取的是平均值,PCU拉的越高,就意味着这形成这一峰值所需要的时间是很长的(一般不会出现瞬间形成PCU),换句话形成PCU,得有一个缓慢上升的过程,但是我们希望这个上升想斜坡长,陡,这样也以为着活跃的用户很多。
然而如果我们发现这个比值已经低于0.5了,那么也就意味着:
PCU形成的不明显,波峰被稀释掉了;
关键时期的人气没有得到提升;
游戏产品的生命周期进入衰退阶段(长期0.5以下);
突发情况造成。
ACU/PCU能干什么?
刚才已经说了这个指标低于0.5时的分析情况,那也是这个指标的用途所在,补充还有几点:
我们看到了ACU是经过计算的平均值,相比PCU而言,其变化幅度是相对比PCU缓慢的,进而ACU变化的缓慢,PCU变化是很迅速的,因为PCU容易受到很多因素的影响:
比如某个新活动;
新版本的更新;
小号泛滥;
事件营销。
进而我们可以推断出,一般情况下这条曲线是不会剧烈的变化(因为不受影响的情况下PCU波动也是相对稳定的),但是如果有了以上的因素刺激,那么这条曲线变化很剧烈。这样很容易就能知道一些我们想要的结果,利于我们分析,比如
游戏游戏粘性是否下降;
游戏活动分析;
版本更新分析;
活动更新分析;
工作室小号情况参考。
总的来说,虽然只是一个比值,但是其背后的只是和内容还是很多的,这需要我们去分析和把握。
数据分析咨询请扫描二维码
在当今数字化时代,数据已成为推动经济和技术发展的关键因素。企业和机构对数据科学与大数据专业人才的需求急剧增长。该领域涵盖 ...
2024-11-16金融数学是一门充满挑战和机遇的专业,它将数学、统计学和金融学的知识有机结合,旨在培养能够运用数学和统计方法解决复杂金融市 ...
2024-11-16在信息时代的浪潮中,大数据已成为推动创新的重要力量。无论是在商业、医疗、金融,还是在日常生活中,大数据扮演的角色都愈发举 ...
2024-11-16在快速演变的数字时代,数据分析已成为多个行业的核心驱动力。无论你是刚刚踏入数据分析领域,还是寻求进一步发展的专业人士,理 ...
2024-11-15Python作为一种通用编程语言,以其简单易学、功能强大等特点,成为众多领域的核心技术驱动者。无论是初学者还是有经验的编程人员 ...
2024-11-15在当今数据驱动的世界中,数据分析已成为许多行业的基础。无论是商业决策,产品开发,还是市场策略优化,数据分析都扮演着至关重 ...
2024-11-15数据分析作为现代商业和研究领域不可或缺的一部分,吸引了越来越多的初学者。然而,自学数据分析的过程中,初学者常常会遇到许多 ...
2024-11-15在当今的数据驱动世界中,机器学习方法在数据挖掘与分析中扮演着核心角色。这些方法通过从数据中学习模式和规律来构建模型,实现 ...
2024-11-15随着数据在各个行业的重要性日益增加,数据分析师在商业和技术领域的角色变得至关重要。其核心职责之一便是通过数据可视化,将复 ...
2024-11-15数据分析师的职责不仅仅局限于解析数据和得出结论,更在于将这些复杂的信息转换为清晰、易懂且具有影响力的沟通。良好的沟通能力 ...
2024-11-15数字化转型是企业提升竞争力和实现可持续发展的关键路径。面对快速变化的市场环境,以及技术的飞速发展,企业在数字化转型过程中 ...
2024-11-15CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14在当今高速发展的技术环境下,企业正在面临前所未有的机遇和挑战。数字化转型已成为企业保持竞争力和应对市场变化的必由之路。要 ...
2024-11-13爬虫技术在数据分析中扮演着至关重要的角色,其主要作用体现在以下几个方面: 数据收集:爬虫能够自动化地从互联网上抓取大量数 ...
2024-11-13在数据分析中,数据可视化是一种将复杂数据转化为图表、图形或其他可视形式的技术,旨在通过直观的方式帮助人们理解数据的含义与 ...
2024-11-13