互联网+时代,看大数据如何解决购房者痛点
于开发商们而言,他们的黄金年代已经结束;而对于房产经纪行业而言,这才是黄金时代的开始。因为,新房市场,尤其是一线城市的新房市场正在走向萎缩,二手房交易在未来空间变得越来越富有想象力。
市场够大,但挑战也够多。
在 低消费高频、不会有大质量差距的领域,只需要重构链接价值和用户沟通价值即可,大家烧钱就可以带来用户尝试,用户尝试就能撬动业务流转,业务流转就能够占 领市场。但在二手房领域,消费者不会这样,他们需要真实的数据,有保障的服务,专业的经纪人,这些才是达成消费者房产类交易的基础条件。
长久以来,中国的二手房市场,信息不对称,虚假房源太多,部分从业人员良莠不齐,服务能力不行,售后服务缺失,业主需要承担较大风险,这导致了行业中不少问题与“痛点”的产生。
不过,这些行业“痛点”,正在由于大数据的建立、互联网+时代的到来而得到解决。
与许多二手房中介公司相比,链家在互联网和大数据方面的探索要早的多。IT出身的左晖早已深谙这背后的逻辑,为了把链家做成一家大的平台,他将公司办公地点从北京朝阳门搬到了西二旗,这个集百度、联想、新浪等互联网大咖为一体的创新圣地。
早 在2008年,链家引入SE系统(Sale Efficiency),并启动IT和互联网化战略,每年直接投入都在亿元以上,仅房源数据库这块的投入就超过4亿元——还不包括在大数据领域的投入与试 错。七八年的时间,链家已经逐步从原先的IT公转变为DT公司。链家在IT化建设、大数据标准化等方面的探索主要包括以下四个方面:
一 是构建大数据库与楼盘字典。通过人工,链家把全国的存量房的真实情况做了一个大摸底,基于这些真实的房源数据,链家统一建立了类似美国MLS(房屋多重上 市系统)的楼盘字典,按照“国家-城市-城区-商圈-小区-楼-单元-层-户型-户-房间”的层级去排序,所有房源的数据都纳入其中,全国每一个房源只有 一个编码。目前,链家在全国30个城市里数完了6000万套房子,并且录入了链家自己开发的“楼盘字典”。 未来,链接的房源数据库将扩增覆盖到全国100个重点城市、涵盖1亿套房源。
大量的投入让链家的楼盘字典效果明显。一个数据显示,链家现在北京的报盘率达到了85%-90%左右,也就意味着,如果北京某个区域二手房市场上有100套房源挂牌****,链家就会在楼盘字典里掌握其中85-90套左右的房源。
二 是提高转化效率,实现交易标准化。买房人的需求其实是不具像的,不容易被表达出来,而且是随机发生的,链家网要做的就是帮客户把这个漏斗不断地收缩。链家 开发了SE系统,它的核心是实现从房源委托到达到交易的转化效率。SE系统可以盯住每人每单,每一单委托,系统会按规则分配责任盘,维护和服务好业主。这 就意味着,在SE系统之下,客源的匹配从依赖于人转化为依赖于系统。
三是实现经纪人的标准化、管控化服务。在二手房交易中,经纪人是非常关键的角色,即便是再真实的房源,如果碰到不专业、素质低下的经纪人,交易也无法达成。因此,链家在经纪人方面实行强管控和标准化。
一 方面,链家给经纪人设定“定级制”,定级的依据是积分,积分越高,提点越高,这就倒逼经纪人不断提升自己专业知识和客户服务水平。另一方面,在链家网上还 有房地产经纪人的评分功能,在透明的环境下,房地产经纪人会更加自律,同时也增加了消费者的信任感。此外,链家也出台了红黄线制度,被查处发布假房源的经 纪人会被记一条黄线,两条就自动走人。
依托互联网对数据进行标准化管理,链家实现二手房交易信息的无差别共享,改变房产行业中信息不透明的状况,提高买卖双方效率,这无疑能够大大提升消费者的购房体验。而通过大数据的管控,链家不仅占领了市场,还赢得了口碑,成为房地产经纪服务行业一个新的标杆。
四 是不断进行技术革新,提升用户体验。为了提高服务水平,链家不断通过技术革新来提高服务水准。2008年,链家地产就推出了“链家在线”,开启链家独立的 电子商务网站,为消费者创造全新的网络找房体验,同时为房产经纪行业的网络营销树立新的行业标准。2010年,链家在线改版升级,增加了包括国内首创的 720度全景小区及室内看房、智能房源推荐、以及3D地图、手机看房、实时沟通等多项突破性的找房功能。紧随移动互联大潮,链家又打造了掌上链家APP, 为客户提供更快更精准的房源信息。
每一次的升级、每一次的创新与突破都体现了链家地产以客户利益为中心、提高行业服务水平的决心。
在买方时代,这个已经不能由开发商单方面主导的游戏战场,特别是在互联网+时代,用户体验是一切的核心。解决不了二手房的交易痛点,提升不了用户体验,就跑不赢移动互联网这个大时代。
房产经纪行业等同于信息服务业,核心是数据与人的Business。数据与技术是基础,通过数据的不断完善、技术的不断革新,链家经纪人服务水平不断得到提高。但说到底,技术不过手段,在服务行业,最关键的还是人,还是软实力。
针对服务不规范、服务效率低下的问题,链家逐步构建“安心服务承诺”体系,给客户提供买房、卖房全生命周期专业化、标准化、规划化的服务。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20