R语言处理缺失数据的高级方法
主要用到VIM和mice包
install.packages(c("VIM","mice"))
1.处理缺失值的步骤
步骤:
(1)识别缺失数据;
(2)检查导致数据缺失的原因;
(3)删除包含缺失值的实例或用合理的数值代替(插补)缺失值
缺失值数据的分类:
(1)完全随机缺失:若某变量的缺失数据与其他任何观测或未观测变量都不相关,则数据为完全随机缺失(MCAR)。
(2)随机缺失:若某变量上的缺失数据与其他观测变量相关,与它自己的未观测值不相关,则数据为随机缺失(MAR)。
(3)非随机缺失:若缺失数据不属于MCAR或MAR,则数据为非随机缺失(NIMAR)。
2.识别缺失值
NA:代表缺失值;
NaN:代表不可能的值;
Inf:代表正无穷;
-Inf:代表负无穷。
is.na():识别缺失值;
is.nan():识别不可能值;
is.infinite():无穷值。
is.na()、is.nan()和is.infinte()函数的返回值示例
xis.na(x)is.nan(x)is.infinite(x)
x<-NATRUEFALSEFALSE
x<-0/0TRUETRUEFALSE
x<-1/0FALSEFALSETRUE
complete.cases()可用来识别矩阵或数据框中没有缺失值的行,若每行都包含完整的实例,则返回TRUE的逻辑向量,若每行有一个或多个缺失值,则返回FALSE;
3.探索缺失值模式
(1)列表显示缺失值
mice包中的md.pattern()函数可以生成一个以矩阵或数据框形式展示缺失值模式的表格
library(mice)
data(sleep,package="VIM")
md.pattern(sleep)
(2)图形探究缺失数据
VIM包中提供大量能可视化数据集中缺失值模式的函数:aggr()、matrixplot()、scattMiss()
library("VIM")
aggr(sleep,prop=FALSE,numbers=TRUE)
library("VIM")
aggr(sleep,prop=TRUE,numbers=TRUE)#用比例代替了计数
matrixplot()函数可生成展示每个实例数据的图形
matrixplot(sleep)
浅色表示值小,深色表示值大;默认缺失值为红色。
marginplot()函数可生成一幅散点图,在图形边界展示两个变量的缺失值信息。
library("VIM")
marginplot(sleep[c("Gest","Dream")],pch=c(20),col=c("darkgray","red","blue"))
(3)用相关性探索缺失值
影子矩阵:指示变量替代数据集中的数据(1表示缺失,0表示存在),这样生成的矩阵有时称作影子矩阵。
求这些指示变量间和它们与初始(可观测)变量间的相关性,有且于观察哪些变量常一起缺失,以及分析变量“缺失”与其他变量间的关系。
head(sleep)
str(sleep)
x<-as.data.frame(abs(is.na(sleep)))
head(sleep,n=5)
head(x,n=5)
y<-x[which(sd(x)>0)]
cor(y)
cor(sleep,y,use="pairwise.complete.obs")
4.理解缺失值数据的来由和影响
识别缺失数据的数目、分布和模式有两个目的:
(1)分析生成缺失数据的潜在机制;
(2)评价缺失数据对回答实质性问题的影响。
即:
(1)缺失数据的比例有多大?
(2)缺失数据是否集中在少数几个变量上,抑或广泛存在?
(3)缺失是随机产生的吗?
(4)缺失数据间的相关性或与可观测数据间的相关性,是否可以表明产生缺失值的机制呢?
若缺失数据集中在几个相对不太重要的变量上,则可以删除这些变量,然后再进行正常的数据分析;
若有一小部分数据随机分布在整个数据集中(MCAR),则可以分析数据完整的实例,这样仍可得到可靠有效的结果;
若以假定数据是MCAR或MAR,则可以应用多重插补法来获得有铲的结论。
若数据是NMAR,则需要借助专门的方法,收集新数据,或加入一个相对更容易、更有收益的行业。
5.理性处理不完整数据
6.完整实例分析(行删除)
函数complete.cases()、na.omit()可用来存储没有缺失值的数据框或矩阵形式的实例(行):
newdata<-mydata[complete.cases(mydata),]
newdata<-na.omit(mydata)
options(digits=1)
cor(na.omit(sleep))
cor(sleep,use="complete.obs")
fit<-lm(Dream~Span+Gest,data=na.omit(sleep))
summary(fit)
7.多重插补
多重插补(MI)是一种基于重复模拟的处理缺失值的方法。
MI从一个包含缺失值的数据集中生成一组完整的数据集。每个模拟数据集中,缺失数据将使用蒙特卡洛方法来填补。
此时,标准的统计方法便可应用到每个模拟的数据集上,通过组合输出结果给出估计的结果,以及引入缺失值时的置信敬意。
可用到的包Amelia、mice和mi包
mice()函数首先从一个包含缺失数据的数据框开始,然后返回一个包含多个完整数据集的对象。每个完整数据集都是通过对原始数据框中的缺失数据进行插而生成的。
with()函数可依次对每个完整数据集应用统计模型
pool()函数将这些单独的分析结果整合为一组结果。
最终模型的标准误和p值都将准确地反映出由于缺失值和多重插补而产生的不确定性。
基于mice包的分析通常符合以下分析过程:
library(mice)
imp<-mice(mydata,m)
fit<-with(imp,analysis)
pooled<-pool(fit)
summary(pooled)
mydata是一个饮食缺失值的矩阵或数据框;imp是一个包含m个插补数据集的列表对象,同时还含有完成插补过程的信息,默认的m=5analysis是一个表达式对象,用来设定应用于m个插补的统计分析方法。方法包括做线回归模型的lm()函数、做广义线性模型的glm()函数、做广义可加模型的gam()、及做负二项模型的nbrm()函数。fit是一个包含m个单独统计分析结果的列表对象;pooled是一个包含这m个统计分析平均结果的列表对象。</pre><pre name="code" class="plain">library(mice)
data(sleep,package="VIM")
imp<-mice(sleep,seed=1234)
fit<-with(imp,lm(Dream~Span+Gest))
pooled<-pool(fit)
summary(pooled)
impimp$imp$Dream
利用complete()函数可观察m个插补数据集中的任意一个,格式为:complete(imp,action=#)
eg:
dataset3<-complete(imp,action=3)
dataset3
8.处理缺失值的其他方法
(1)成对删除
处理含缺失值的数据集时,成对删除常作为行删除的备选方法使用。对于成对删除,观测只是当它含缺失数据的变量涉及某个特定分析时才会被删除。
cor(sleep,use="pairwise.complete.obs")
虽然成对删除似乎利用了所有可用数据,但实际上每次计算只用了不同的数据集,这将会导致一些扭曲,故建议不要使用该方法。
(2)简单(非随机)插补
简单插补,即用某个值(如均值、中位数或众数)来替换变量中的缺失值。注意,替换是非随机的,这意味着不会引入随机误差(与多重衬托不同)。
简单插补的一个优点是,解决“缺失值问题”时不会减少分析过程中可用的样本量。虽然 简单插补用法简单,但对于非MCAR的数据会产生有偏的结果。若缺失数据的数目非常大,那么简单插补很可能会低估标准差、曲解变量间的相关性,并会生成不正确的统计检验的p值。应尽量避免使用该方法。
常用方法:Sweave和odfWeave。
Sweave包可将R代码及输出嵌入到LaTeX文档中,从而得到 PDF、PostScript和DVI格式的高质量排版报告。
odfWeave包可将R代码及输出嵌入到ODF(Open Documents Format)的文档中。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31本人基本情况: 学校及专业:厦门大学经济学院应用统计 实习经历:快手数据分析、字节数据分析、百度数据分析 Offer情况:北京 ...
2025-01-30