如何让你的数据得到业务方认可?
很多朋友都反映说,在我的公司根本就不重视数据, 数据分析人员的价值根本得不到体现,做的很郁闷。问我:不说数据分析都很受重视吗?很希望去一个数据分析很受重视的公司工作。我说,不受重视是指哪些方面?
“其它部门有数据需求的时候,我们只是做简单的加工,处理,提取数据。”
“做运营活动或者营销活动根本就不怎么看数据,直接就做活动了。”
“有时候,他们要数据直接找技术部门的DBA人员提取数据。”
“业务方开会从来不叫我。”
其时,一个数据分析师(对 数据挖掘、建模,那更是只用在真正重视数据,而且数据量大的时候才会存在)的理想状态,业务部门有什么业务上的问题,会愿意来和你讨论,而你可以从数据上 帮助业务人员,双方之间相互信任,沟通很顺畅。甚至你可以对业务提出自己的观点,而且有时候业务人员很愿意接受你的观点,并按照你的想法去实施。从而让你 很有成就感。
但是如果一个业务部门不重视,很多做数据分析人员就“自暴自弃”。说公司不重视数据,那我就这样的,也不管它的,反正谁要什么数据,我就给他什么样的数据。
It is just a job!
其实这是一个恶性循环,不是吗?
也许是数据分析这个行业(指现在很多公司都有专门的数据分析师或者相关岗位)本来出现的时间不长,很多人都没有真正的意识到他如何让数据发挥最大的 价值。但是大多数人都知道数据是有价值的。特别是互联网公司,有人说一个没有数据分析的互联网公司根本不叫互联网公司。有人说互联网的公司其实就是一个数 据公司。所以很多公司的数据分析人员,常常面对这样情况?
业务部门认为,数据部门根据就没有帮上什么忙?没有提供什么有价值的数据?或者提供的数据有时候不对?没有及时提供数据?
而数据分析师认为,业务部门从来没有主动来与我讨论业务,让我了解业务,我怎么通过数据去帮助数据。最多是我要做活动了,我要干什么了。你给我拉个数据看看,或者帮我做张图,其它你不要管了。
最终二者只会越离越远,那么如何打破这个循环的呢?作为一个分析师,你为什么不去分析为什么会有这样的现状?你连自己的事情都分析不好,还指望帮别人分析什么(开个玩笑)!
为什么会出现这种情况呢?其实数据受不受重视,关键在于能不能产生(体现)“价值”。我认为主要有以下几方面:
1、数据本身是有价值的。一个数据有价值有条件有以下几条
这也是为什么现在数据分析师要求统计学、计算机专业背景,首先你的把数据业务口径转换成数据上统计口径,这需要这二个相关的专业知识。这是做数据的最基础的基础,你连数据的统计不对,不完整,不准备,还谈什么数据分析啊。
2、让管理者(或者使用数据的人)意识到它的价值
在数据分析人员对数据进行正确加工/处理,而能否产生价值更为关键的是,让最终的目标受众(你使用数据/看数据的人)看到它的价值,能帮助业务方解 决问题。能直接从你数据得到解决问题的solution,right?Howtoachieve?只有一条路,沟通!沟通!再沟通!
主动去业务方沟通,去问这些问题,
1、你现在业务发展到什么情况?
2、我们的竞争对手是什么情况?
3、整个外部市场是怎么样的?
4、日常业务你希望看数据,你希望看哪些数据(指标)?分内部数据与外部数据?
5、为什么你看这些指标?而不是其它的?
6、你希望数据更新的频率是?每天/每周/每月?
7、你希望数据的最终展现形式是?
8、目前业务上比较大的困惑在哪?对这些比较大的困惑,我们能不能联合做一些专题分析,我从数据角度,你们从业务出发,来共同解决这个问题。
(沟通的时候谦虚一点,态度好一点,你可是去向别人学习你业务知识的)
有人说,做数据分析是出来卖的。你的数据分析结果(相当你的产品)出来好,你要业务方接受(消费者)它,相信它解决你的问题。这是很有道理的。既然 我们在商业里,不是追求数据分析方法多高深,不是做研究,而是更多能业务方带来帮忙,推动业务的成长,不是吗?这难道不是一个数据分析师的商业价值?
3、数据分析师的背景
很多数据分析都是学统计、计算机出身的,其对自己公司的业务、商业模式、运营模式其实了解的不多,甚至可以说“不懂”。而对业务方来说,做数据的根 据就不懂业务,却拿着数据来对我们业务人员指手画脚,凭什么?(你觉得在这种情况有家会接受吗?不管你会不会接受,反正我是不会接受的。)其实,如果你是 一个在这个行业背景很深的数据分析师,其实业务方是很希望与你沟通的,也许他们与你沟通刚开始不会在数据层面。这里面说明了什么?说明了 数据分析师你一定要去了解业务,熟悉业务。所以相关的业务数据知识结构都没有,何以谈数据?何以得到别人的认同?
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31本人基本情况: 学校及专业:厦门大学经济学院应用统计 实习经历:快手数据分析、字节数据分析、百度数据分析 Offer情况:北京 ...
2025-01-30