京公网安备 11010802034615号
经营许可证编号:京B2-20210330
SAS时间序列模型预测未来航班数量
时间序列建模步骤:
1. 时间序列平稳性检验:如果一个时间序列的概率分布与时间无关,则成为平稳序列。
2. 时间序列平稳化和零均值化:时间序列预测模型是建立在平稳序列的基础上的,由于日常所见的数据序列大多是非平稳序列,故需要转换为平稳序列,转换后需要进行零均值化处理。
3. 自回归模型(AR模型)、移动平均模型(MA模型)和自回归移动平均模型(ARMA模型)阶数识别,确定模型阶数p和q值:
AR模型:某个观测值Xt与其滞后p期的观测值的线性组合再加上随机误差项。
即:Xt= φ1Xt-1+φ2Xt-2+……+φpXt-p+at;
MA模型:某个观测值Xt与先前t-1,t-2,t-q个时刻进入系统的q个随机误差项即at,at-1,……,Xt-q的线性组合。
即:Xt=at-θ1at-1-θ2at-2-……-θqXt-q;
ARMA模型:即观测值不仅与其以前p个时刻的自身观测值有关,而且还与其以前时刻进入系统的q个随机误差存在一定的依存关系。
即Xt= φ1Xt-1+φ2Xt-2+……+φpXt-p+at-θ1at-1-θ2at-2-……-θqXt-q。
4. 参数估计:确定p、q值后,运用最大似然、最小二乘法等算法估计模型参数(φi 和θj,i=1,2,…,p;j=1,2,……,q)值。
5. 模型预测:利用显著的模型对时间序列进行预测。
以下就使用sashelp.air这份时间序列数据集进行预测模型的建立。
1. 平稳性识别
proc gplotdata=sashelp.air;
plot air*date;
symbol c=red i=spline v=dot;
run;
通过趋势图不难发现其存在长期趋势并且随着季节存在周期性的变动。
2. 时间序列平稳化和零均值化
观察发现使用一阶差分可得平稳化和零均值化时间序列。
proc arimadata=sashelp.air;
identify var=air(1) nlag=30;
run;
白噪声检验原假设:一阶差分值是白噪声。
1阶差分和1阶差分的ACF(自相关系数)、PACF(偏自相关系数)和IACF(逆自相关系数)。
3. 模型识别
通过图像我们可以发现ACF拖尾,PACF12阶截尾,故选择AR模型。
模型参数的确定主要有三种方法:
这里以MINIC为例:
proc arimadata=sashelp.air;
identify var=air(1) nlag=30 minic p=(0:12) q=(0:12);
/*还可以添加选项minic, esacf, scan*/
run;
4. 参数估计和检验
proc arimadata=sashelp.air;
identify var=air(1) nlag=30;
estimate p=12 q=0 ML;
/*还可以添加选项method=ML(极大似然)、ULS(非条件最小二乘法)、CLS(最小二乘法)*/
run;

结果:
1 + 0.18266 B**(1) + 0.2696 B**(2) + 0.22644 B**(3) + 0.26291 B**(4) + 0.19729 B**(5) + 0.26238 B**(6) + 0.21259 B**(7) + 0.31246 B**(8) + 0.17541 B**(9) + 0.29835 B**(10) + 0.16218 B**(11) – 0.64715 B**(12)
5. 模型预测
proc arimadata=sashelp.air plots(only)=forecast(forecast);
identify var=air(1) nlag=30;
estimate p=12 q=0 ML;
forecast lead=10 out=out;
run;
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23