
SAS时间序列模型预测未来航班数量
时间序列建模步骤:
1. 时间序列平稳性检验:如果一个时间序列的概率分布与时间无关,则成为平稳序列。
2. 时间序列平稳化和零均值化:时间序列预测模型是建立在平稳序列的基础上的,由于日常所见的数据序列大多是非平稳序列,故需要转换为平稳序列,转换后需要进行零均值化处理。
3. 自回归模型(AR模型)、移动平均模型(MA模型)和自回归移动平均模型(ARMA模型)阶数识别,确定模型阶数p和q值:
AR模型:某个观测值Xt与其滞后p期的观测值的线性组合再加上随机误差项。
即:Xt= φ1Xt-1+φ2Xt-2+……+φpXt-p+at;
MA模型:某个观测值Xt与先前t-1,t-2,t-q个时刻进入系统的q个随机误差项即at,at-1,……,Xt-q的线性组合。
即:Xt=at-θ1at-1-θ2at-2-……-θqXt-q;
ARMA模型:即观测值不仅与其以前p个时刻的自身观测值有关,而且还与其以前时刻进入系统的q个随机误差存在一定的依存关系。
即Xt= φ1Xt-1+φ2Xt-2+……+φpXt-p+at-θ1at-1-θ2at-2-……-θqXt-q。
4. 参数估计:确定p、q值后,运用最大似然、最小二乘法等算法估计模型参数(φi 和θj,i=1,2,…,p;j=1,2,……,q)值。
5. 模型预测:利用显著的模型对时间序列进行预测。
以下就使用sashelp.air这份时间序列数据集进行预测模型的建立。
1. 平稳性识别
proc gplotdata=sashelp.air;
plot air*date;
symbol c=red i=spline v=dot;
run;
通过趋势图不难发现其存在长期趋势并且随着季节存在周期性的变动。
2. 时间序列平稳化和零均值化
观察发现使用一阶差分可得平稳化和零均值化时间序列。
proc arimadata=sashelp.air;
identify var=air(1) nlag=30;
run;
白噪声检验原假设:一阶差分值是白噪声。
1阶差分和1阶差分的ACF(自相关系数)、PACF(偏自相关系数)和IACF(逆自相关系数)。
3. 模型识别
通过图像我们可以发现ACF拖尾,PACF12阶截尾,故选择AR模型。
模型参数的确定主要有三种方法:
这里以MINIC为例:
proc arimadata=sashelp.air;
identify var=air(1) nlag=30 minic p=(0:12) q=(0:12);
/*还可以添加选项minic, esacf, scan*/
run;
4. 参数估计和检验
proc arimadata=sashelp.air;
identify var=air(1) nlag=30;
estimate p=12 q=0 ML;
/*还可以添加选项method=ML(极大似然)、ULS(非条件最小二乘法)、CLS(最小二乘法)*/
run;
结果:
1 + 0.18266 B**(1) + 0.2696 B**(2) + 0.22644 B**(3) + 0.26291 B**(4) + 0.19729 B**(5) + 0.26238 B**(6) + 0.21259 B**(7) + 0.31246 B**(8) + 0.17541 B**(9) + 0.29835 B**(10) + 0.16218 B**(11) – 0.64715 B**(12)
5. 模型预测
proc arimadata=sashelp.air plots(only)=forecast(forecast);
identify var=air(1) nlag=30;
estimate p=12 q=0 ML;
forecast lead=10 out=out;
run;
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10