小白学数据分析之关联分析算法篇Apriori
早些时候写过关于购物篮分析的文章,其中提到了C5.0和Apriori算法,没有仔细说说这算法的含义,昨天写了一下关联分析的理论部分,今天说说关联分析算法之一的Apriori算法,很多时候大家都说,数据分析师更多的是会用就可以了,不必纠结于那些长篇累牍的理论,其实我觉得还是有点必要的,你未必要去设计算法,但是如果你掌握和熟知一个算法,这对于你如何驾驭和使用这个算法是很有帮助的,此外每个算法都有使用的局限性,比如空间和时间复杂度,使用条件约束。最典型的就是我们难道一份原始数据,然后经过数据处理要进行算法模拟分析,但是此时你会出现一个问题,我需要处理哪些数据,如何处理?而这就需要你对你所使用的算法必须熟悉,比如能够操作的数据格式,类型。比如GRI算法要求使用的数据必须是事实表的方式存储,这样的算法特点必须建立在对于算法的了解把握层次上。
Apriori算法
其名字是因为算法基于先验知识(prior knowledge).根据前一次找到的频繁项来生成本次的频繁项。Apriori是关联分析中核心的算法。
Apriori算法的特点
只能处理分类变量,无法处理数值型变量;
数据存储可以是交易数据格式(事务表),或者是事实表方式(表格数据);
算法核心在于提升关联规则产生的效率而设计的。
Apriori的思想
正如我们之前所提到的,我们希望置信度和支持度要满足我们的阈值范围才算是有效的规则,实际过程中我们往往会面临大量的数据,如果只是简单的搜索,会出现很多的规则,相当大的一部分是无效的规则,效率很低,那么Apriori就是通过产生频繁项集,然后再依据频繁项集产生规则,进而提升效率。
以上所说的代表了Apriori算法的两个步骤:产生频繁项集和依据频繁项集产生规则。
那么什么是频繁项集?
频繁项集就是对包含项目A的项目集C,其支持度大于等于指定的支持度,则C(A)为频繁项集,包含一个项目的频繁项集称为频繁1-项集,即L1。
为什么确定频繁项集?
刚才说了,必须支持度大于我们指定的支持度,这也就是说能够确定后面生成的规则是在普遍代表性上的项目集生成的,因为支持度本身的高低就代表了我们关联分析结果是否具有普遍性。
怎么寻找频繁项集?
这里不再讲述,直接说一个例子大家就都明白了。例子来源于Fast Algorithms for Mining Association Rules
Apriori寻找频繁项集的过程是一个不断迭代的过程,每次都是两个步骤,产生候选集Ck(可能成为频繁项集的项目组合);基于候选集Ck计算支持度,确定Lk。
Apriori的寻找策略就是从包含少量的项目开始逐渐向多个项目的项目集搜索。
数据如下:
我们看到,数据库存储的数据格式,会员100购买了 1 3 4三种商品,那么对应的集合形式如右边的图所示。那么基于候选集C1,我们得到频繁项集L1,如下图所示,在此表格中{4}的支持度为1,而我们设定的支持度为2。支持度大于或者等于指定的支持度的最小阈值就成为L1了,这里{4}没有成为L1的一员。因此,我们认定包含4的其他项集都不可能是频繁项集,后续就不再对其进行判断了。
此时我们看到L1是符合最低支持度的标准的,那么下一次迭代我们依据L1产生C2(4就不再被考虑了),此时的候选集如右图所示C2(依据L1*L1的组合方式)确立。C2的每个集合得到的支持度对应在我们原始数据组合的计数,如下图左所示。
此时,第二次迭代发现了{1 2} {1 5}的支持度只有1,低于阈值,故而舍弃,那么在随后的迭代中,如果出现{1 2} {1 5}的组合形式将不被考虑。
如上图,由L2得到候选集C3,那么这次迭代中的{1 2 3} { 1 3 5}哪去了?如刚才所言,{1 2} {1 5}的组合形式将不被考虑,因为这两个项集不可能成为频繁项集L3,此时L4不能构成候选集L4,即停止。
如果用一句化解释上述的过程,就是不断通过Lk的自身连接,形成候选集,然后在进行剪枝,除掉无用的部分。
根据频繁项集产生简单关联规则
Apriori的关联规则是在频繁项集基础上产生的,进而这可以保证这些规则的支持度达到指定的水平,具有普遍性和令人信服的水平。
以上就是Apriori的算法基本原理,留了两个例子,可以加深理解。
例子1:
例子2:
数据分析咨询请扫描二维码
在准备数据分析师面试时,掌握高频考题及其解答是应对面试的关键。为了帮助大家轻松上岸,以下是10个高频考题及其详细解析,外加 ...
2024-12-20互联网数据分析师是一个热门且综合性的职业,他们通过数据挖掘和分析,为企业的业务决策和运营优化提供强有力的支持。尤其在如今 ...
2024-12-20在现代商业环境中,数据分析师是不可或缺的角色。他们的工作不仅仅是对数据进行深入分析,更是协助企业从复杂的数据信息中提炼出 ...
2024-12-20随着大数据时代的到来,数据驱动的决策方式开始受到越来越多企业的青睐。近年来,数据分析在人力资源管理中正在扮演着至关重要的 ...
2024-12-20在数据分析的世界里,表面上的技术操作只是“入门票”,而真正的高手则需要打破一些“看不见的墙”。这些“隐形天花板”限制了数 ...
2024-12-19在数据分析领域,尽管行业前景广阔、岗位需求旺盛,但实际的工作难度却远超很多人的想象。很多新手初入数据分析岗位时,常常被各 ...
2024-12-19入门数据分析,许多人都会感到“难”,但这“难”究竟难在哪儿?对于新手而言,往往不是技术不行,而是思维方式、业务理解和实践 ...
2024-12-19在如今的行业动荡背景下,数据分析师的职业前景虽然面临一些挑战,但也充满了许多新的机会。随着技术的不断发展和多领域需求的提 ...
2024-12-19在信息爆炸的时代,数据分析师如同探险家,在浩瀚的数据海洋中寻觅有价值的宝藏。这不仅需要技术上的过硬实力,还需要一种艺术家 ...
2024-12-19在当今信息化社会,大数据已成为各行各业不可或缺的宝贵资源。大数据专业应运而生,旨在培养具备扎实理论基础和实践能力,能够应 ...
2024-12-19阿里P8、P9失业都找不到工作?是我们孤陋寡闻还是世界真的已经“癫”成这样了? 案例一:本硕都是 985,所学的专业也是当红专业 ...
2024-12-19CDA持证人Louis CDA持证人基本情况 我大学是在一个二线城市的一所普通二本院校读的,专业是旅游管理,非计算机非统计学。毕业之 ...
2024-12-18最近,知乎上有个很火的话题:“一个人为何会陷入社会底层”? 有人说,这个世界上只有一个分水岭,就是“羊水”;还有人说,一 ...
2024-12-18在这个数据驱动的时代,数据分析师的技能需求快速增长。掌握适当的编程语言不仅能增强分析能力,还能帮助分析师从海量数据中提取 ...
2024-12-17在当今信息爆炸的时代,数据分析已经成为许多行业中不可或缺的一部分。想要在这个领域脱颖而出,除了热情和毅力外,你还需要掌握 ...
2024-12-17数据分析,是一项通过科学方法处理数据以获取洞察并支持决策的艺术。无论是在商业环境中提升业绩,还是在科研领域推动创新,数据 ...
2024-12-17在数据分析领域,图表是我们表达数据故事的重要工具。它们不仅让数据变得更加直观,也帮助我们更好地理解数据中的趋势和模式。相 ...
2024-12-16在当今社会,我们身处着一个飞速发展、变化迅猛的时代。不同行业在科技进步、市场需求和政策支持的推动下蓬勃发展,呈现出令人瞩 ...
2024-12-16在现代商业世界中,数据分析师扮演着至关重要的角色。他们通过解析海量数据,为企业战略决策提供有力支持。要有效完成这项任务, ...
2024-12-16在当今数据爆炸的时代,数据分析师是组织中不可或缺的导航者。他们通过从大量数据中提取可操作的洞察力,帮助企业在竞争激烈的市 ...
2024-12-16