促进大数据发展行动纲要:推动产业创新发展(2)
专栏2 国家大数据资源统筹发展工程
整合各类政府信息平台和信息系统。严格控制新建平台,依托现有平台资源,在地市级以上(含地市级)政府集中构建统一的互联网政务数据服务平台和信息惠民服务平台,在基层街道、社区统一应用,并逐步向农村特别是农村社区延伸。除国务院另有规定外,原则上不再审批有关部门、地市级以下(不含地市级)政府新建孤立的信息平台和信息系统。到2018年,中央层面构建形成统一的互联网政务数据服务平台;国家信息惠民试点城市实现基础信息集中采集、多方利用,实现公共服务和社会信息服务的全人群覆盖、全天候受理和“一站式”办理。
整合分散的数据中心资源。充分利用现有政府和社会数据中心资源,运用云计算技术,整合规模小、效率低、能耗高的分散数据中心,构建形成布局合理、规模适度、保障有力、绿色集约的政务数据中心体系。统筹发挥各部门已建数据中心的作用,严格控制部门新建数据中心—展区域试点,推进贵州等大数据综合试验区建设,促进区域性大数据基础设施的整合和数据资源的汇聚应用。
加快完善国家基础信息资源体系。加快建设完善国家人口基础信息库、法人单位信息资源库、自然资源和空间地理基础信息库等基础信息资源。依托现有相关信息系统,逐步完善健康、社保、就业、能源、信用、统计、质量、国土、农业、城乡建设、企业登记监管等重要领域信息资源。到2018年,跨部门共享校核的国家人口基础信息库、法人单位信息资源库、自然资源和空间地理基础信息库等国家基础信息资源体系基本建成,实现与各领域信息资源的汇聚整合和关联应用。
加强互联网信息采集利用。加强顶层设计,树立国际视野,充分利用已有资源,加强互联网信息采集、保存和分析能力建设,制定完善互联网信息保存相关法律法规,构建互联网信息保存和信息服务体系。
4.支持宏观调控科学化。建立国家宏观调控数据体系,及时发布有关统计指标和数据,强化互联网数据资源利用和信息服务,加强与政务数据资源的关联分析和融合利用,为政府开展金融、税收、审计、统计、农业、规划、消费、投资、进出口、城乡建设、劳动就业、收入分配、电力及产业运行、质量安全、节能减排等领域运行动态监测、产业安全预测预警以及转变发展方式分析决策提供信息支持,提高宏观调控的科学性、预见性和有效性。
5.推动政府治理精准化。在企业监管、质量安全、节能降耗、环境保护、食品安全、安全生产、信用体系建设、旅游服务等领域,推动有关政府部门和企事业单位将市场监管、检验检测、违法失信、企业生产经营、销售物流、投诉举报、消费维权等数据进行汇聚整合和关联分析,统一公示企业信用信息,预警企业不正当行为,提升政府决策和风险防范能力,支持加强事中事后监管和服务,提高监管和服务的针对性、有效性。推动改进政府管理和公共治理方式,借助大数据实现政府负面清单、权力清单和责任清单的透明化管理,完善大数据监督和技术反腐体系,促进政府简政放权、依法行政。
6.推进商事服务便捷化。加快建立公民、法人和其他组织统一社会信用代码制度,依托全国统一的信用信息共享交换平台,建设企业信用信息公示系统和“信用中国”网站,共享整合各地区、各领域信用信息,为社会公众提供查询注册登记、行政许可、行政处罚等各类信用信息的一站式服务。在全面实行工商营业执照、组织机构代码证和税务登记证“三证合一”、“一照一码”登记制度改革中,积极运用大数据手段,简化办理程序。建立项目并联审批平台,形成网上审批大数据资源库,实现跨部门、跨层级项目审批、核准、备案的统一受理、同步审查、信息共享、透明公开。鼓励政府部门高效采集、有效整合并充分运用政府数据和社会数据,掌握企业需求,推动行政管理流程优化再造,在注册登记、市场准入等商事服务中提供更加便捷有效、更有针对性的服务。利用大数据等手段,密切跟踪中小微企业特别是新设小微企业运行情况,为完善相关政策提供支持。
7.促进安全保障高效化。加强有关执法部门间的数据流通,在法律许可和确保安全的前提下,加强对社会治理相关领域数据的归集、发掘及关联分析,强化对妥善应对和处理重大突发公共事件的数据支持,提高公共安全保障能力,推动构建智能防控、综合治理的公共安全体系,维护国家安全和社会安定。
数据分析咨询请扫描二维码
在现代信息技术的广阔世界中,大数据架构师扮演着至关重要的角色。他们不仅引领着企业的数据战略,还通过技术创新推动业务的不断 ...
2024-11-04在当今数字化时代,数据分析师已成为企业关键角色,帮助决策者通过数据驱动的洞察实现业务目标。成为一名成功的数据分析师,需要 ...
2024-11-03在当今数字化的世界中,数据分析已经成为推动商业决策的关键因素。随着公司和组织越来越依赖数据来驱动业务战略,对数据分析专 ...
2024-11-03《Python数据分析极简入门》 第2节 2 Pandas数据类型 Pandas 有两种自己独有的基本数据结构。需要注意的是,它固然有着两种数据 ...
2024-11-01《Python数据分析极简入门》 第2节 1 Pandas简介 说好开始学Python,怎么到了Pandas? 前面说过,既然定义为极简入门,我们只抓 ...
2024-10-31在当今数据驱动的世界中,数据科学与工程专业的重要性愈发凸显。无论是推动技术进步,还是在商业决策中提供精准分析,这一专业都 ...
2024-10-30在当今信息爆炸的时代,数据已成为企业决策和战略制定的核心资源。爬虫工程师因此成为数据获取和挖掘的关键角色。本文将详细介绍 ...
2024-10-30在当今数据驱动的世界中,数据分析是揭示商业洞察和推动决策的核心力量。选择合适的数据分析工具对于数据专业人士而言至关重要。 ...
2024-10-30能源企业在全球经济和环境保护双重压力下,正面临前所未有的挑战与机遇。数字化转型作为应对这些挑战的关键手段,正在深刻变革传 ...
2024-10-30近年来,随着数据科学的逐步发展,Python语言的使用率也越来越高,不仅可以做数据处理,网页开发,更是数据科学、机器学习、深度 ...
2024-10-30大数据分析师证书 针对不同知识,掌握程度的要求分为【领会】、【熟知】、【应用】三个级别,考生应按照不同知识要求进行学习。 ...
2024-10-30《Python数据分析极简入门》 附:Anaconda安装教程 注:分Windows系统下安装和MacOS系统安装 1. Windows系统下安装 第一步清华大 ...
2024-10-29拥抱数据分析的世界 - 成为一名数据分析工程师是一个充满挑战和机遇的职业选择。要成功地进入这个领域,你需要掌握一系列关键技 ...
2024-10-28降本增效:管理战略的关键 企业管理中的降本增效不仅是一项重要的战略举措,更是激发竞争力、提高盈利能力的关键。这一理念在当 ...
2024-10-28企业数字化是指利用数字技术和信息化手段,对企业的各个方面进行改造和优化,以提升生产效率、服务质量和市场竞争力的过程。实现 ...
2024-10-28数据科学专业毕业后,毕业生可以选择从事多种不同的岗位和领域。数据科学是一个快速发展且广泛应用的领域,毕业生在企业、学术界 ...
2024-10-28学习数据科学与大数据技术是当今职业发展中至关重要的一环。从基础到高级,以下是一些建议的课程路径: 基础课程: Python编程 ...
2024-10-28在信息技术和数据科学领域,数据架构师扮演着至关重要的角色。他们负责设计和管理企业中复杂的数据基础设施,以支持数据驱动的决 ...
2024-10-28进入21世纪以来,随着信息技术的迅猛发展,大数据已经成为全球最具影响力的技术之一,并成为企业数字化转型的核心驱动力。大数据 ...
2024-10-28随着科技的迅猛发展,数字化转型已成为现代企业保持竞争力和推动增长的关键战略之一。数字化不仅仅是技术的应用,它代表着一种全 ...
2024-10-28