大数据时代下的银行业:围绕客户体验创新求变
中国金融服务业正在发生翻天覆地的变化,除了持续的金融系统改革外,中国的商业银行面临着更具挑战的客户预期以及诸多新机构的竞争。为了保持竞争优势,金融机构采取措施,利用更加先进的数据和分析能力,提供移动银行等数字渠道服务,提升客户参与度和全渠道体验。”在6月23日举行的2016年中国国际银行会议上,亚洲银行家主席以理表示。
进入大数据时代,变革正在银行业中迅速蔓延。从银行家们的视角来看,大数据技术赋予了银行业新的转型驱动力,提升客户体验则成为现如今银行业的变革核心。
银行业的竞争演变:从客户到用户再到账户
当前,大数据已渗透到了生活场景方方面面,如今是一个万物互联的时代。在此背景下,银行业的诸多传统观念开始被打破,呈现出新的趋势。
首先是去存款化趋势。“我们零售客户管理资产当中,存款的占比是逐步降低的,这是趋势,这其中有利率市场化的因素,也因为存贷比监管的放松,还有客户已养成投资的习惯。”中信银行零售银行部副总经理汪雷表示。
与此同时,随着监管政策的变化,银行原来更多注重规模类的指标观念开始改变,传统的以产品为中心的营销模式,正在向以客户为中心的营销模式转变。
“如今,银行更注重的是通过精准营销提升单一客户的贡献度。”汪雷说。
另一趋势是,随着大数据的发展,相对于客户数而言,如今更被银行业看重的是用户数。
“高黏性的叫做用户,客户可能有一万个,但是真正的用户可能只有一千个。若用户再往下分一级,就是账户。”因此,汪雷认为,还有一个趋势,就是未来银行和银行之间的竞争以及银行和非银行金融机构的竞争,一定会是账户级的竞争。
大数据技术的应用核心:提升客户体验
在这些趋势下,大数据技术能给银行带来什么?业内人士认为,银行利用大数据的潜力无穷,巧妙运用数据科学技术可以开辟全新的机遇。
“运用大数据分析提升客户体验的方式,意味着银行可以提供更有针对性和有效控制成本的营销活动,设计产品并针对特定客户需求提供特色产品,甚至发展出更精确的模型评估信用和检测交易息差行为。与此同时,若以创造性的方式合并数据,则可留住和提升客户的忠诚度。对于银行而言,这意味着更有利可图的业务。”中国银行总行授信评审委员会专职评委伍伟烨表示。
大数据技术的核心在于提升客户体验,那么,银行业的下一步动作会是什么?
“更多的数据并不等于更好的数据,因此银行需要应用大数据确定对推进其业务发展趋势有用的部分。大数据分析要使用所有可用的数据预测消费者可能如何回应,数据收集渠道因此需要横跨客户内部、社会、监管,银行开始对数据进行排序,以确定最有价值的信息所在。利用大数据分析,帮助银行获得更深入的信息,由此产生的营销策略更精确,并最终提出一个消费者可能接受的报价,其结果是双赢的局面。”伍伟烨认为。
事实上,对于银行而言,数据一直是其亟待开发的潜在优势。
“银行早已获得比其他企业更多的消费者数据,且银行持有其客户数据的数量和品种稳步增加。用详细的客户数据中支出和收入的信息,做到对人们在哪里进行消费心中有数。银行正用独特的视角勾画客户每一个清晰的画面。”伍伟烨说。
传统网点的转型升级:更注重营销气氛
物理网点是银行业避不开的话题。在大数据时代下,传统物理网点的弊端显露无疑。
“在传统的物理网点模式下,服务半径和服务人数都存在着‘天花板’。以我们5年前调研的中信杭州嘉兴同乡支行为例,该网点的物理服务半径限制在了3公里,一天叫号的饱和度是500个。”汪雷说。
互联网技术的切入使得物理网点的这一“天花板”得以被打破。
“通过互联网技术,银行传统物理网点可以是无边界的。如今,我们再到同乡支行就惊喜地发现,现在线上的一些获客技术和线上平台的客户营销已经把物理网点的覆盖半径以及物理网点的现场服务人员这两个瓶颈突破了。”汪雷说。
那么,在互联网的颠覆下,物理网点是否还有存在的必要?
“人和人之间需要沟通,那么客户就还需要网点。客户不可能全在线上,也不可能全在线下,需要一个线上线下相互交互的过程。与传统不同的是,如今的网点定位应该是用来建立沟通、信任和交流的场所。”北京银行电子银行部总经理施展说。
互联网和移动互联网的快速发展,正让线上线下协同落地成为可能。在此方面,北京银行2014年推出的智能轻网点,就是线上线下协同发展新兴零售网站运营的典型模式。
“智能轻网点把传统网点中大量操作的部分通过网上银行、手机银行和自助设备改由客户自主操作来完成,网点人员只有2到3个人,且保留下来的都是营销人员,这是互联网时代线下网点最有价值的部分。”据施展介绍,由于网点没有了任何操作,所以在网点建设上,可以不拘泥传统网点为操作所设计的模式,而是在设计上让人感觉更亲和,让客户有走进来的欲望。
“这种模式建立以后,客户进来可以坐得住,银行人员考虑的是营销和客户关系,不用考虑任何操作,交互性非常强。”施展说。
对于银行而言,这种模式同时大大降低了网点成本。
“传统银行网点围绕操作所配备的物理面积和人员成本其实很高,没有了这些以后,可以把更多的面积留给客户,银行的面积可以降到很小,而且银行只需要配备营销人员。由于占地面积缩小、人员减少,事实上我们的智能轻网点成本很低。”据他透露,自2015年至今,智能轻网点模式在北京银行13家分行中已经运行了10家,部署网点达到40家。
数据分析咨询请扫描二维码
数字化转型是企业提升竞争力和实现可持续发展的关键路径。面对快速变化的市场环境,以及技术的飞速发展,企业在数字化转型过程中 ...
2024-11-15CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14在当今高速发展的技术环境下,企业正在面临前所未有的机遇和挑战。数字化转型已成为企业保持竞争力和应对市场变化的必由之路。要 ...
2024-11-13爬虫技术在数据分析中扮演着至关重要的角色,其主要作用体现在以下几个方面: 数据收集:爬虫能够自动化地从互联网上抓取大量数 ...
2024-11-13在数据分析中,数据可视化是一种将复杂数据转化为图表、图形或其他可视形式的技术,旨在通过直观的方式帮助人们理解数据的含义与 ...
2024-11-13在现代银行业中,数字化用户行为分析已成为优化产品和服务、提升客户体验和提高业务效率的重要工具。通过全面的数据采集、深入的 ...
2024-11-13在这个数据飞速增长的时代,企业若想在竞争中占据优势,必须充分利用数据分析优化其营销策略。数据不仅有助于理解市场趋势,还可 ...
2024-11-13数据分析行业的就业趋势显示出多个积极的发展方向。随着大数据和人工智能技术的不断进步,数据分析在各行各业中的应用变得越来越 ...
2024-11-13市场数据分析是一门涉及多种技能和工具的学科,对企业在竞争激烈的市场中保持竞争力至关重要。通过数据分析,企业不仅可以了解当 ...
2024-11-13数据分析与数据挖掘是数据科学领域中两个关键的组成部分,它们各有独特的目标、方法和应用场景。尽管它们经常在实际应用中结合使 ...
2024-11-13在如今这个数据驱动的时代,数据分析能力已经成为许多行业的重要技能。无论是为工作需要,还是为了职业转型,掌握数据分析都能够 ...
2024-11-13在如今这个数据驱动的时代,数据分析能力已经成为许多行业的重要技能。无论是为工作需要,还是为了职业转型,掌握数据分析都能够 ...
2024-11-13作为一名业务分析师,你肩负着将业务需求转化为技术解决方案的重任。面试这一角色时,涉及的问题多种多样,涵盖技术技能、分析能 ...
2024-11-13自学数据分析可能看似一项艰巨的任务,尤其在开始时。但是,通过一些策略和方法,你可以系统地学习和掌握数据分析的相关知识和技 ...
2024-11-10Excel是数据分析领域中的一款强大工具,它凭借其灵活的功能和易用的界面,成为了许多数据分析师和从业者的首选。无论是简单的数 ...
2024-11-10