大数据分析的道与术:数据分析常犯的6类错误
夏天雪糕销量越好,游泳溺水的事件也越多,是不是雪糕中某种成分对人影响的后果呢?简单的思考后就会发现,是因为气温越高,雪糕销量会越高,同时温度越高,去河里游泳的孩子就越多,溺水事件也就越多,雪糕销量和溺水是关联关系,而并非因果关系。
上面的例子很简单,也很容易被识破,但在实际的数据分析中,关联和因果并不是那么容易区分。再举一例:
某广告公司分析人员发现:每月广告投入越高的用户,越不容易流失,而广告投入低的用户群则很容易流失,从而得出结论:“高投入会降低客户流失率,建议销售引导客户提高首月广告投入,从而降低新客流失率”。而实际情况是,新客户初期的投入常常都比较少,看广告有了效果之后,才会逐步扩大广告投放预算,投入高的客户流失率低是因为认可广告投放效果,而不是因为花的钱多。
关联性很容易判断,如何判断是否是因果关系呢?因果符合下面的特征:
1.两个事件是关联的,就是说总是同时出现
2.原因在前,结果在后
3.原因消除的话,结果也消除
因果关系需要设计相对严谨的对照来证明,更多的时候需要靠经验来判断,这时候更注意要谨慎下结论。
2. 不匹配的比较例:美国与西班牙战争爆发后,不少美国人不愿意参军,坦诚是因为怕死,针对这种情况,美国军方做了一份统计报告来劝说大家参军:“可靠数据统计,美国海军的死亡率是 0.9%,而同期纽约市民的死亡率是 1.6%”,潜台词非常明显,如果惧怕死亡更应该参军,因为在军营中比呆在纽约更安全。这个例子乍看起来很有道理,如果你仔细琢磨,就会发现其中的阴谋:比较的对象不一样!如果仔细查阅,就会发现,美国海军死亡名单基本都是健康的青年小伙,而纽约市民的死亡名单大多是老弱病残,这两份数据放在一起显然不合适。
在做数据比较的时候,需要选取合适的比较对象,以便更准确地认知和发现结论,在数据分析中,一般选取的比较对象有以下几类:
自身历史
与历史同期相比,比如去年同期或上个季度。
同行竞品
合理预期
与之前产品发展的预期相比,比如:A 产品的研发,比预期收入提高 10%
同质对照组
A/B Test 结果的对比
3. 基于个案的认知每当劝说朋友戒烟时,朋友总会拿出这个段子:
不抽烟不喝酒,63岁–林彪
不抽烟只喝酒,73岁–周恩来
只抽烟不喝酒,83岁–毛泽东
既抽烟又喝酒,93岁–邓小平
吃喝嫖赌样样有,103岁–张学良没有任何坏习惯,一生做好事–23岁,雷锋
无论抽不抽烟,一个人都可能在各个年龄下死亡,从宏观的统计上分析,抽烟的人的寿命平均比不抽烟的人小 5 岁,而上面举出的个例,则无法说明问题
4. 精挑细选的数据维度例:一所艺术院校,男生校服只有裤子款式,而女生有裤子和裙子两种款式,经统计得知 75% 的女生选择裙子,25% 的女生选择裤子,今天你进入校园,远远看到一个穿裤子的同学,他是男生的概率更高,还是女生的概率更高?凭感觉得到的答案是男生概率高,因为所有的男生都穿裤子款式,而只有 25% 的女生选择裤子款式。这个例子中忽略了一个重要的数据:男生和女生的人数。
如果告诉你,该学校共 1000 人, 900 人是女生,100 人是男生,结果是什么?
女生选裤子的有 900*25% = 225 人
男生选裤子的有 100 人
很显然,这种情况下,这个人是女性的概率更高。在普通人看来,往往会有男女各占一半的经验误解。所以,在一些情况下,隐藏了部分数据就是说谎。
5. 过多脑补的推理在一个冬日的晚上,产品流量出现下跌,经过一番分析,得出原因:天气太冷,网民因为手冷而不愿意上网,提前上床睡觉,所以流量下跌。在一个冬日的晚上,产品流量出现上涨,经过一番分析,得出原因:天气太冷,网民愿意出门,只好在家窝着上网,所以流量上涨。该案例背后的信息是:一个结果可能有多个原因可以解释,“大忽悠”往往引导人们只去相信其中的一个,整个推理过程没有对应的细节数据辅助。
6. 先入为主的偏见
先别往下看,这幅图的内容是什么?
你可能觉得这幅图太过模糊和抽象,一时也看不出是什么,如果告诉你说,这是一只斑点狗,很多人就会恍然大悟,觉得确实是一只斑点狗。这里隐藏了一个重要的心理学理念:
你脑子里想的是什么,你就会去寻找什么,你将会得到你期盼的结果 —— 勃朗宁该理念有个通俗的说法是“人们只会看见他们愿意看见的事情”。
在数据分析中,虽然很难不带任何“先入为主”的观点,但依然要追求追求客观分析的态度,也要适时根据数据去观察和反思,不断修正自己的观点。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31本人基本情况: 学校及专业:厦门大学经济学院应用统计 实习经历:快手数据分析、字节数据分析、百度数据分析 Offer情况:北京 ...
2025-01-30