传统会展企业也累积了大量的财务数据、展商数据、网络数据等,但是,大数据由于采集范围广、类型多样等特征,使传统会展企业既具备了更精细化营销的可能性,又面临如何挖掘最有价值营销数据的挑战。由于会展公司在收集数据时存在很多问题,导致在实际工作中数据用不上,说到这里我们不得不引入一个重要的概念----大数据画像
大数据画像
用户画像数据维度,针对每一类数据实体,进一步分解可落地的数据维度,形成字段集。
1. 用户数据:
用户自然特征:性别,年龄,地域,教育水平,出生日期,职业,星座
用户兴趣特征:兴趣爱好,使用APP/网站,浏览/收藏内容,互动内容,品牌偏好,产品偏好
用户社会特征:婚姻状况,家庭情况,社交/信息渠道偏好
用户消费特征:收入状况,购买力水平,已购商品,购买渠道偏好,最后购买时间,购买频次
2. 商品数据(以消费电子类为例):
手机:品牌,颜色,尺寸,电池容量,内存,摄像头,CPU,材质,散热,价格区间
笔记本:品牌,屏幕尺寸,配置,颜色,风格,薄厚,价格区间
智能手表:品牌,功能,材质,电池容量,颜色,风格,价格区间
3. 渠道数据(以消费电子类为例):
信息渠道:微信,微博,论坛,SNS,贴吧,新闻网站,咨询App
购买渠道:电商平台,微店,官网,实体店,卖场
传统会展公司数据收集现状
然而,回归到传统的展会经营中,公司收集的数据只能保证电话号码没问题,至于展商的姓名、年龄、地狱、教育水平、购买能力、参展频率等完全不知道,所以只能局限于给展商打电话进行营销。而在展会发达国家,电话营销早已过时。
会展公司要想做好展会大数据营销工作,首先还是定义好用户大数据画像的元素,然后借助可视化工具,如Introducing Landline andStateline、El Mirador| Fathom等。当然,对于现在国内的会展公司,第一步还是数据收集操作的规范,保证录入的数据规范切无误,便于可视化工具的读取。
大数据并非在于“大”
人们往往犯这样的错误,认为大数据越大越好。数据并非越大越好。有价值的分析工具是帮助客户从海量的大数据找出真正可用于决策的数据,这些有价值的数据就是‘小数据’。”换言之,“小数据”是针对客户的特定需求概括、提炼出的数据。
那什么是精准化营销?
举例:大多数的都用论坛来学知识,你比较喜欢展会知识学习,而你哥哥喜欢SEO优化多,百度大数据后台只能分析系统(CRM),通过1-几个月的数据分析,判断出你喜欢展会百科论坛,然后SEO类知识的相关链接和广告,你哥哥不会收到,因为系统判定他不是展会知识群体。
利用技术手段迎接大数据时代来临
虽然全球大数据目前还处在概念阶段,但很多企业已经意识到了大数据的重要性及其带来的效益。边城先森认为,展览行业的大数据是指和具体的展会本身或所在行业相关的大数据,分为内部数据与外部数据。展会内部大数据是指展会主办商多年来所收集的历次展会观众记录,如联系方式、不同行业和类型的产品采购需求等。外部大数据是指与展会相关的其他数据,如按照国家和行业划分的全球采购统计数据。
对于那些在数据管理方面先行一步,或者做好准备迎接大数据的展会主办商,有很多可以利用的工具和服务能帮助他们更好地理解和处理数据,其中不乏“可视化”工具,如Introducing Landline andStateline、El Mirador| Fathom等。这些工具能够有效抓取数据,并使用图形、图标和其它直观方式加以分析表示,帮助办展者更好地理解自己的数据。
实现精准营销的步骤
基于大数据的精准营销过程分为:采集和处理数据、建模分析数据、解读数据这么三个大层面。通过对展商、观众特征、展品特征、采购行为特征数据的采集和处理,可以进行多维度的专业观众消费特征分析、展品策略分析和销售策略指导分析。通过准确把握观众需求、增加观众互动的方式推动营销策略的策划和执行。
展会大数据包括内部数据和外部数据,此文省略。那我们实际操作有哪些步骤呢?
1、数据层:采集和处理数据
大数据处理的数据类型包括:括图片、文本、网页、社交网络,还有传统的交易数据。
不局限在传统采集数据的过程一般是有限的、有意识的、结构化的进行数据采集你能采集
2、业务层:建模分析数据
使用的数据分析模型,例如基本统计、机器学习、例如数据挖掘的分类、聚类、关联、预测等算法。
3、应用层:解读数据
数据指导营销最重要的是解读。传统一般是定义营销问题之后,采集对应的数据,然后根据确定的建模或分析框架,数据进行分析,验证假设,进行解读。解读的空间是有限的。
而大数据提供了一种可能性,既可以根据营销问题,封闭性地去挖掘对应数据进行验证,也可以开放性地探索,得出一些可能与常识或经验判断完全相异的结论出来。可解读的点变得非常丰富。
2大数据营销数据类型
人口统计学数据:包括展商的年龄、性别、国籍、注册时提供的信息;
展商行为数据:访问、页面停留时长、触点等。
展商内容偏好数据:所在的行业、参展频率、品牌口碑、展品范围、停留时间等。
交易数据:实际订单、客单件、订单转化率、促销响应率等
3大数据营销应用场景
从会展公司营销应用层面上看,主要是围绕展商、展品、专业观众消费行为三大元素进行营销策略的制定和实施的。这三要素之间彼此独立又相互联系,每个独立要素都可制定营销策略,同时三要素之间的关联组合更是会展公司制定有效营销策略的关键。
会展公司要不要大数据化?
大公司愿意投入大数据研究,原因在于他们的运营方式和业务特点:第一,数据驱动并依赖优秀的数据分析;第二,大公司有更多资源投入到人力和新技术上,以更好地分析理解数据。可以想象,这些网站依赖于理解用户的网络行为,对此进行分析以推动更好的在线体验,最终推动销售”。大数据对于中小型会展企业究竟有多重要,是否所有企业都必须进入大数据时代?我想这一个对此,笔者认为“并不需要紧紧跟随每一个‘营销热词’,我想我们更应该关注的是如何更好地利用现有的数据库,让其发挥更大的价值。”
数据分析咨询请扫描二维码
自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14在当今高速发展的技术环境下,企业正在面临前所未有的机遇和挑战。数字化转型已成为企业保持竞争力和应对市场变化的必由之路。要 ...
2024-11-13爬虫技术在数据分析中扮演着至关重要的角色,其主要作用体现在以下几个方面: 数据收集:爬虫能够自动化地从互联网上抓取大量数 ...
2024-11-13在数据分析中,数据可视化是一种将复杂数据转化为图表、图形或其他可视形式的技术,旨在通过直观的方式帮助人们理解数据的含义与 ...
2024-11-13在现代银行业中,数字化用户行为分析已成为优化产品和服务、提升客户体验和提高业务效率的重要工具。通过全面的数据采集、深入的 ...
2024-11-13在这个数据飞速增长的时代,企业若想在竞争中占据优势,必须充分利用数据分析优化其营销策略。数据不仅有助于理解市场趋势,还可 ...
2024-11-13数据分析行业的就业趋势显示出多个积极的发展方向。随着大数据和人工智能技术的不断进步,数据分析在各行各业中的应用变得越来越 ...
2024-11-13市场数据分析是一门涉及多种技能和工具的学科,对企业在竞争激烈的市场中保持竞争力至关重要。通过数据分析,企业不仅可以了解当 ...
2024-11-13数据分析与数据挖掘是数据科学领域中两个关键的组成部分,它们各有独特的目标、方法和应用场景。尽管它们经常在实际应用中结合使 ...
2024-11-13在如今这个数据驱动的时代,数据分析能力已经成为许多行业的重要技能。无论是为工作需要,还是为了职业转型,掌握数据分析都能够 ...
2024-11-13在如今这个数据驱动的时代,数据分析能力已经成为许多行业的重要技能。无论是为工作需要,还是为了职业转型,掌握数据分析都能够 ...
2024-11-13作为一名业务分析师,你肩负着将业务需求转化为技术解决方案的重任。面试这一角色时,涉及的问题多种多样,涵盖技术技能、分析能 ...
2024-11-13自学数据分析可能看似一项艰巨的任务,尤其在开始时。但是,通过一些策略和方法,你可以系统地学习和掌握数据分析的相关知识和技 ...
2024-11-10Excel是数据分析领域中的一款强大工具,它凭借其灵活的功能和易用的界面,成为了许多数据分析师和从业者的首选。无论是简单的数 ...
2024-11-10在快速发展的商业环境中,数据分析能力已经成为许多行业的核心竞争力。无论是初学者还是经验丰富的专家,搭建一个有效的数据分析 ...
2024-11-10在如今的数据驱动世界,数据分析师在各行各业中扮演着至关重要的角色。随着企业越来越依赖数据决策,数据分析职位的需求不断增加 ...
2024-11-10