大数据分析当前对P2P信贷有什么用
当P2P发现了大数据之后,通过大数据对借款人进行特征分析,从而实现线上风控控制流程,这一直是无数人追求的梦想。但对于现在来说无论是人民银行征信系统或是大数据分析都过于浮夸,以下内容笔者愿就所认为之难处与大家讨论。
虽然现在人民银行征信系统数据还没有对接,但并不妨碍很多P2P平台拿这个做宣传,拿这个作为P2P行业跨向新纪元的钥匙。下面我们来简单的分析一下征信系统对于P2P行业是否真的有天翻地覆的神奇功效。
中国的征信系统截至去年年底收录自然人8.3亿,收录企业及其他组织将近2000万户,包含了以基本信息及银行信贷为核心的数据,还包括社保、公积金、环保、欠税、民事裁决与执行等信息,看似数据量相当充实,但是仅凭借这些信息就能确定这个人到底是否可以借款以及借款多少了吗?目前光P2P平台就还包括了手机清单、收入证明、家属身份信息、驾照、房产等34项信息,征信系统本身也只能满足现在P2P需求的一部分而已。甚至连征信中心的一位负责人都公开表示:你不能通过征信信息就给别人放款,关键还是需要自己做好风控。
当然,现在有很多人也在说大数据,我认为理想状态是可以达到的,大规模获取海量数据,然后加以分析,再结合央行征信,可以精准的判断出一个借款主体的资金用途和还款能力,想想真是,做梦也会笑啊。但是梦想就像泡沫,一戳就破。在这个过程中有两个问题要亟待解决。
第一:如何获取数据?理想中的P2P大数据征信是多维度非相关数据,我们需要用户社会学基本数据信息、现金流信息、行为偏好、信息偏好、人际网、迁徒特征、消费场所信息。打一个比方,在线下做风控的时候我们经常会问借款人的邻居对借款人的印象如何,无论邻居说“他是一个勤劳朴实人”亦或是“他天天出去打牌”这些信息对信贷审核都有至关重要的影响,但是到了线上我们通过什么途径才能获取到我们想要的数据呢?
第二:我们如何分析这些数据?目前,有复杂数据积累并且已经具备大数据分析基础的公司只有百度和阿里两家,同时这两家公司都在至少五年前就开始投入大量资源探索大数据业务。五年后的今天这两家公司数据分析到达如何地步了呢?百度公司每天净增数据量1PB,说的通俗易懂一点就是每天百度净增数据大约4千亿页文本的样子,但这其中99%都是无效数据,如何筛选出有效数据目前还是一个无法攻克的难关。回看阿里呢?数据使用率5%,依然是大量无效数据,如何对这些数据进行分析也是一筹莫展。也就是说大数据的第一个关卡就剩两家公司了,第二道关卡可能要卡很多年。
好了,现在我已经感受到有人在心中默念美国最大的P2P平台lending club了,那么我就看看他们是如何做到线上风控的。
首先用户在平台上申请借款,lending club在得到用户许可的情况下从experian/trans union/equifax三家大征信局获得用户的信用评分,不同分数有不同额度,也承受不同成本。审核通过后webBank向借款人发放贷款再转让给lending club,最后在转让给投资者。最重要的是,lending club与foliofn合作,推出了线上债券交易平台,当有用户逾期时,可以将债权在该平台上转让,专业投资者会在上面进行债券购买,数据显示,逾期16天以内的债权能在10%左右的折扣下出售,逾期16~30天的债权能在30%左右的折扣率成交。lending club有三个核心元素,第一:200年完善的征信体系。第二:非标准资产能够有效证券化。第三,有长期的历史数据对风险水平进行定价。以上三点目前中国还不具备。
综上所述,中国目前还不能依靠征信或者大数据解决信贷审核问题,就好像袁隆平老师杂交水稻一样,先试几年,抗虫害够硬、对环境没有破坏、确定能够大幅增产了,再大面积推广。未来即便征信系统对接完毕了,我也希望P2P平台能够以审慎的原则对待它,别上来就临床治疗,会出人命的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31提到数据分析,你脑海里可能会浮现出一群“数字控”抱着电脑,在海量数据里疯狂敲代码的画面。但事实是,数据分析并没有你想象的 ...
2024-12-31关于数据分析师是否会成为失业高危职业,近年来的讨论层出不穷。在这个快速变化的时代,技术进步让人既兴奋又不安。今天,我们从 ...
2024-12-30数据分析师在现代企业中扮演着关键角色,他们的工作内容不仅丰富多样,还对企业的决策和发展起着重要的作用。正如一个经验丰富的 ...
2024-12-29