中国需要加快形成大数据国家战略
大数据是新的石油,是本世纪最为珍贵的财产。大数据正在改变各国综合国力,重塑未来国际战略格局。2013年7月,国家主席习近平视察中国科学院时指出:“大数据是工业社会的‘自由’资源,谁掌握了数据,谁就掌握了主动权。”
大数据“安全的小船不能说翻就翻”
数据显示,2015年全球数据泄密的事故达1673起,涉及7亿多条数据记录。《Verizon 2015数据泄露调查报告》也显示,500强企业中,超过半数曾发生过数据泄露事件。更令人惊悚的是,60%的案例里,攻击者仅需要几分钟就可以得手。没有大数据安全,就好比一个国家没有安防一样,数据得不到保护,随时有可能受到破坏、攻击和篡改,极大地阻碍大数据产业的健康发展。可见,实现大数据产业可持续发展的前提是数据安全。
我们平时关心更多的数据“锁”或者“仓库管理员”是否可靠,其实更深层次的数据安全是数据库的安全。我国大数据库几十年一直用国际技术,说白了就是别人建了仓库,我们把数据装到别人的仓库里,按别人的规则、规范使用管理自己的数据,还用别人的仓库管理员(CPU)管理数据,什么都是别人的,除了数据来源是自己的。那么,我们要怎么用这些数据?用了干什么?用了能有什么结果?最终都是国际技术说了算。久而久之,我们国人已经自觉不自觉有个观念:国际技术保障数据安全,但这种安全真的安全吗?有一天国际技术不保障这种安全了,国际技术游戏规则变化了,国际技术被核心技术国完全掌控了,我们怎么办?
在大数据时代,甚至人们连吃什么、用什么都依赖数据分析时,我们依然不把最核心的数据安全放入改革制高点去讨论,这是危险的。所以无论什么性质的改革,核心还是硬技术实力的提升,只有核心基础技术实力提升了,用改革的办法推进核心技术结构调整,减少无效和低端供给,扩大有效和中高端有核心技术支撑的供给,增强供给结构对需求变化的适应性、灵活性、安全性,提高全要素生产率,才能使供给体系更好适应需求结构变化。
在大数据时代,大数据改变人类生活的说法一点儿也不夸张,但如果没有适时建立起大数据安全保障体系,大数据意味着存在安全隐患。对任何企业、机构、机关乃至于社会来讲,大数据分析都是最敏感的资产。大数据分析工作提供了精准、关键的竞争优势;另一方面,如果上述分析被别人掌握或落入别有用心之人手中,则会陷入巨大的风险中,这对企业来讲是如此,对机构来讲是如此,对国家更是如此。
数据库技术建设是国家战略安全无法回避的问题
现在国家间实力竞争,经济实力的竞争占据主要战场,整个社会商业数据分析就是这个主要战场的核心要素,而管理运用这些要素的大数据核心技术就是这些要素的保护者,卫士也就是数据仓库。我们应该在这些核心要素上痛下功夫,无论前端多少展现平台,这不重要,至少我们可以做到把自己的数据装在自己的仓库里,并自己制定规则,虽然数据库建设是所有大数据里最难啃的技术部分,但是也是最核心部分,对技术要求最高。
如果如何使用数据和管理数据,都是我们自己说了算,最好还把这个说了算的标准拿到国际上去,让国际上也使用我们的标准,这样我们就不但拥有了自己的技术,而且拥有了被国际社会认可的,被国际社会遵从的核心技术标准,那么这种核心竞争力应该是供给侧里“补短板”最有力的体现。我们国家在国际标准委大数据分会数据库标准提案的通过,意义也就不仅仅是在国际标准化组织里制定标准这么简单。
我们国家一直以来大数据就是依赖国际技术,因为技术是人家的、产品是人家造的,标准自然就是人家制定了,定了产品标准接下来就是定游戏规则,道理很明白,就是咱们技术上突破不了,就永远用别人的游戏规则玩游戏。所以这场革命势在必行,国家正在这个方面加大力度。大力支持供给侧改革中的“补短板”,其实也是由原来“中国制造”升级到“中国智造”的技术革命过程。在原来由国际上美、德一统天下的大数据核心技术领域,标上“中国智造”这一标志也应该是具有供给侧革命性意义的。
大数据正在成为经济社会发展新的驱动力,将涵盖经济社会发展各个领域,成为新的重要驱动力。大数据重新定义了各大国博弈的空间。在大数据时代,世界各国对数据的依赖快速上升,国家竞争焦点已经从资本、土地、人口、资源的争夺转向了对大数据的争夺。未来国家层面的竞争力将部分体现为一国拥有数据的规模、活性以及解释、运用的能力,数字主权将成为继边防、海防、空防之后另一个大国博弈的空间。
笔者认为,中国需要加快形成大数据国家战略,着力规划“大数据战略”中长期路线图与实施重点、目标、路径,统筹布局,加快大数据发展核心技术研发,推进大数据开放、共享以及安全方面的相关立法与标准制定,抢占新全球科技革命和产业革命战略机遇期,重构国家综合竞争优势已经迫在眉睫。
数据分析咨询请扫描二维码
数据收集与整理 - 从各种来源收集数据,清洗和整理以确保数据质量和可用性。 数据分析与建模 - 运用统计学方法和机器学习模型对 ...
2024-11-26技术技能 - 编程能力: 数据分析师需要掌握至少一门编程语言,如Python、R或SQL。这些语言对于数据处理、建模和分析至关重要。例 ...
2024-11-26数据分析领域涵盖多样性岗位,根据工作职责和技能需求划分。这些角色在企业中扮演关键角色,帮助组织制定战略、优化流程并实现商 ...
2024-11-26数据分析是一种通过收集、处理、解释和展示数据,以获得见解和决策支持的过程。这个领域涉及使用统计学、计算机科学和商业智能等 ...
2024-11-26数据分析领域正日益成为当今商业世界中不可或缺的一环。随着数据量的爆炸式增长,企业越来越需要能够从这些海量信息中提炼出宝贵 ...
2024-11-26数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。在追求这一职业道路上,合适的教育和培训至关重 ...
2024-11-26数据分析师作为当今信息时代中关键的职业之一,扮演着解释、预测和推动决策的重要角色。他们需要多方位技能来处理各种复杂的数据 ...
2024-11-26数据分析师在今天的商业环境中扮演着至关重要的角色。他们需要应对各种复杂的数据分析任务和业务需求,这要求他们具备广泛的技能 ...
2024-11-26在当今快速变化的技术和市场环境中,数字化转型是企业利用数字技术全面重新设计和改造业务的重要过程。这一转型旨在通过整合云计 ...
2024-11-26数字化转型: 是企业在现代技术和市场环境不断变化的背景下,利用数字技术对其业务进行全面的重新设计和改造的过程。其核心目标是 ...
2024-11-26理论基础与高级学习 数学专业理论基础: 学生首先需要掌握数学的基础理论,包括数学分析、高等代数、几何学、常微分方程、实变函 ...
2024-11-26数字化转型:现代企业蜕变的引擎 数字化转型已然成为当今企业持续发展的关键支柱。这一过程并非简单的技术升级,更是涉及企业文 ...
2024-11-26# 数据科学与大数据技术专业学什么?就业前景与行业需求 **数字化转型:引领企业进步的关键** 数字化转型是现代企业发展的必经 ...
2024-11-26理论部分 - 基础数学理论: - 学生首先需要掌握数学的基础理论,包括数学分析、高等代数、几何学、常微分方程等。 - 这些课程 ...
2024-11-26在选择数据科学和大数据技术专业时,了解不同领域的职责和技能需求至关重要。数据治理工程师是这一领域中不可或缺的角色之一,承 ...
2024-11-26基础课程 统计学基础 - 统计学是数据分析的基石,包括概率、假设检验、回归分析等基本知识,有助于理解数据背后的意义。 - ...
2024-11-26数据分析是一门综合性学科,涉及多个领域的知识和技能。要全面掌握数据分析,需要学习以下内容: 基础课程 统计学基础:统计学 ...
2024-11-26数据治理工程师在当今信息时代扮演着至关重要的角色,负责确保组织内数据的质量、安全性和可用性。他们需要具备一系列技能和才能 ...
2024-11-26在当今数字化时代,数据被誉为新的石油,是企业最有价值的资产之一。因此,建立有效的数据战略规划对于企业的成功至关重要。数据 ...
2024-11-26<section id=
2024-11-26