大数据环境下保险消费特征的改变
大数据时代的到来改变了数据的采集、传输、存储、处理方式,引起了生活方式和社会经济的变革,也给保险业带来了全面和深刻的影响。保险公司纷纷利用大数据来进行保险营销、保险服务方面的尝试和创新,但目前的保险大数据环境尚不成熟,现有的保险消费方式还处在由传统到新型、由被动到主动的一个变化期,大数据环境下的保险营销需要适应新的保险消费特征。
保险消费选择多样化
传统保险模式运作下,保险公司评估消费者的风险水平、消费能力、消费意愿的能力不强,导致部分领域保险产品定价过高,部分领域成为剩余市场。大数据环境下,保险业可以获得全量、实时、潜在的数据来进行详细分析,进行保险产品细分和个性化设计,保险公司的风险管理和成本管控可以更加精细化,这为保险产品创新带来了广阔空间,长期困扰保险业的产品和服务同质化问题有望从根本上得到解决。
比如,保险公司根据消费者的网站登录痕迹、朋友圈留言、贷款信用记录等信息,发现不同消费群体保险需求和风险特质,为保险消费者提供诸如户外骑行保险、医疗整形保险、变现借款保证保险等特色险种,保险消费选择更加多样。
保险消费流程简单化
传统保险经营过程中,保险公司与投保人信息不对称的情况较为突出,保险公司通过要求投保人应当履行如实告知义务,投保时需要填写内容繁多的投保单,出险后需要提出理赔申请和提供繁琐的证明材料。在大数据环境下,风险特征的描述数据极大丰富,保险公司可以通过各种渠道获取更加全面的风险信息,运用个人信息、交易记录、气象信息等社会数据来分析和掌握客户情况,获得与承保理赔相关的信息,在控制风险的前提下进一步减少投保人的告知责任,有效简化承保理赔手续,保险消费流程变得更加简单。
比如,保险公司根据掌握的网络交易数据,研究消费者网购习惯和退货概率,为不同风险的消费者提供不同保费的退货运费险,消费者只需一键购买;对于购买了航班延误险的消费者,无需提供气象证明,甚至不需提出理赔申请,保险公司就能够根据气象信息等大数据资源主动理赔。
保险消费理念前沿化
大数据环境下,传统保险业在集合大数方面的优势逐渐弱化,保险技术服务壁垒逐步瓦解。通过使用各种搜索引擎和比价平台,消费者消费洞察力不断提高,保险消费理念也变得更加前沿。
一方面,越来越多的保险消费者脱离了传统柜台业务模式,开始使用各种自助终端购买保险业务。通过手机APP应用软件就可以轻松完成保险产品的查询和购买,甚至自助完成车险简易案件的查勘工作。
另一方面,保险消费者出现偏好碎片化、谋求资金收益的消费倾向。在透明公开的渠道选择保险产品时,消费者更加偏好设计简单、投保便捷、费率较低的保险产品。保障项目经过分解、条款说明更加简单、产品保费也大大降低的保险产品,更加适应消费者自行挑选的需要。此外,大数据环境下的保险消费者比较熟悉互联网金融,容易在各类理财产品间进行比较,在购买网上销售的投连、万能型保险产品时更加注重资金收益。
保险消费体验延伸化
传统的保险服务集中于经济赔偿与给付,保险消费体验也只局限于保险公司履行了赔付责任。大数据环境下,保险公司与客户的关系不再是一对一的交互沟通,逐渐形成多维网状交互沟通模式,基于客户数据的客户关系管理变得尤为重要。
保险公司可以借助大数据的积累,整合汽车修理、零配件供应、医疗健康服务等供应链,进一步延伸保险产业链边界、维护客户关系,在降低保险经营成本的同时,不断优化保险消费体验。目前,保险公司可以定期为消费者提供包括车辆风险检查、保养维修、交易资讯、健康管理在内的各项服务,未来还有可能基于大数据为消费者提供更加全面的风险管理创新服务。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21