你也许会犯,营销人员使用数据分析的5个误区
许多公司可能都在顺应大数据发展的潮流,希望通过数据分析来指导营销的发展方向,但是他们是否能在实际的营销活动中实现数据的价值呢?
数据分析《大数据时代》的作者Victor教授说,人们应该知道如何从大数据中发掘价值,对数据的第一次使用只实现了其价值的冰山一角。许多公司可能都在顺应大数据发展的潮流,希望通过数据分析来指导营销的发展方向,但是他们是否能在实际的营销活动中实现数据的价值呢?借由数据分析来达到营销活动的成功对于没有经验的营销团队也许是个挑战。
以下是常常导致企业未能充分利用数据的五个误区。 1.未能充分利用人口统计信息
过去,营销人员只能通过传统的市场调查获取有关消费者和受众的性别﹑年龄﹑家庭收入等极为有限的信息。在今天这个数据采集和管理方式都大有进步的时代,获取信息和数据几乎不受限制,这种情况得到了颠覆性的改变。遗憾的是,即便能够获取到大量的信息,许多营销人员对数据的运用仍处于非常肤浅的阶段。
根据2013年TheNeustarGlobalMediaIntelligence的报告,零售营销人员根据消费者的家庭观念和购买汽车的品牌来进行目标市场定位的营销活动比未定位目标市场的营销活动相比,市场表现提升了500%。联想最近发现,通过个性化地定制网站广告能为联想提升30%的点击率,并增加40%的购买转化率。联想的研究显示,如果营销活动结合消费者的其他信息,比如他们的信用和兴趣,都能有效地促成购买转化。 2.关注错误的度量指标
数据的解读和运用需要和背景资料相结合,Facebook的粉丝数﹑App的下载量等看上去颇为壮观的数据很容易导致错误的数据分析,或者营造出成功的错觉。这些指标与那些更为深刻的行为数据(如导航路径﹑品牌偏好)相比,就显得苍白无力了。Silverpop曾经委托ForresterConsulting进行的一项研究发现,B2B营销人员利用行为数据将销售渠道扩大了34%,非行为数据导向的营销只能扩展26%。即便是营销活动的主要目标是提高品牌知名度,消费者对品牌的记忆度和参与度数据还是比网页的浏览数量更具研究价值。
3.忽略线下活动
传统的prospect-lead-customer销售漏斗模型已不再适用于当今顾客做出购买决定的方式。如今的营销活动贯穿了多种渠道,这就使得企业正在收集一些他们不常追踪或者分析的数据。由于现在企业都把关注的重点放在新的数字化指标上,这样很容易忽略或者误判线下的活动,比如把顾客在实体店的购买行为归功于线上广告。根据Twitter的一项研究,在线上与品牌产生互动的消费者更有可能在实体商店进行购买(平均能带来12%的销售增长)。o2o营销的未来发展趋势应该是线上互动以促进线下购买。线上和线下的无缝转换也需要通过数据库来进行管理,并根据数据分析的结果作出优化建议。如果没有像NeustarAKClosedLoop这样的数据分析工具,这些线下购买转化的原因很可能被看作一个巨大的谜团。
4.数据分析和营销行动脱轨
营销活动从策划到实施,每个阶段都应该和数据分析紧密结合,及时与企业各部门沟通,共享数据分析的结果。传统的营销团队行动滞后,常常用之后调查出的数据来支持他们已经做出的决定。相对来说,有远见的营销人员不仅仅运用数据对过去进行批判,而且能够预测未来。AmericanExpress使用预测性的分析和行为数据来识别高风险顾客,以减少损失。在过去,AmericanExpress会挑选出100名普通客户样本进行风险测评,现在他们使用了IBM推出的SPSS预测分析建模软件来辨别可能产生风险的客户。他们发现,软件模型识别流失风险的能力与之前相比提高了8.4倍。另外,预测性的数据分析能够在营销活动开始之前就推动ROI,并在营销活动进行中通过不断地调整来实现实时的效益最大化。
5.让未经培训的员工处理数据
在理想的状态下,数据能够促进文化转变,数据不仅仅运用在营销活动的每个阶段,而且贯穿企业的整个商业活动。同时,许多企业也会在处理数据的技巧上遇到麻烦。CompTIA与美国500名商业和IT界的管理人员进行访谈后发现,60%的参与者清楚地知道需要提高数据管理和分析的水平。准确严谨地使用数据需要一定的投入,企业对数据运用的投入包括:训练现有员工,聘请内部的专家,请教外部分析师或是购买新技术。没有付出就不会有回报,不要指望社交媒体的实习生就能轻松玩转数据。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19在 MySQL 数据库中,查询一张表但是不包含某个字段可以通过以下两种方法实现:使用 SELECT 子句以明确指定想要的字段,或者使 ...
2025-03-17在当今数字化时代,数据成为企业发展的关键驱动力,而用户画像作为数据分析的重要成果,改变了企业理解用户、开展业务的方式。无 ...
2025-03-172025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条 ...
2025-03-14以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-13以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/go ...
2025-03-12以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-11随着数字化转型的加速,企业积累了海量数据,如何从这些数据中挖掘有价值的信息,成为企业提升竞争力的关键。CDA认证考试体系应 ...
2025-03-10推荐学习书籍 《CDA一级教材》在线电子版正式上线CDA网校,为你提供系统、实用、前沿的学习资源,助你轻松迈入数据分析的大门! ...
2025-03-07在数据驱动决策的时代,掌握多样的数据分析方法,就如同拥有了开启宝藏的多把钥匙,能帮助我们从海量数据中挖掘出关键信息,本 ...
2025-03-06