
大力培养大数据人才,引领智慧科技时代
在全球信息化快速发展的大背景下,数据已成为国家重要的基础性战略资源,大数据正日益渗透到社会生活和经济发展的方方面面。2015年,国务院出台《促进大数据发展行动纲要》,提出要全面推进我国大数据发展和应用,加快建设数据强国,在“十三五”规划、“两化融合”、“互联网+”和《中国制造2025》等重大国家战略中,明确要求在全社会各个领域中加大对大数据应用,促进大数据产业发展,加快“数据中国”建设,这标志着大数据产业已上升为战略高度。
大数据互联网产业升温催生人才紧缺
随着大数据产业在全球范围内的快速兴起,国内互联网行业和IT行业的领军企业纷纷进军大数据行业,大量大数据中心的建设,大数据法律法规的完善,数据挖掘、分析、存储和数据感知等技术的不断成熟以及数据安全的加强,使得大数据应用和推广更加广泛和易接受。大数据已经融入了制造业、医疗、金融等多个领域。人才职位主要集中在互联网、金融、房地产、消费品、制药/医疗等行业,源于该几类行业已在短期内无论是产品端、用户端、运营端等都实现了大数据的原始积累,且数据增长速度依然可观。
然而,由于人才培养的滞后,以及新兴行业熟练技术人员积累的不足,未来大数据人才的短缺必将成为制约行业发展的重要因素。目前市场对大数据人才需求的特点是:需求量大、薪资水平高,并且呈上升趋势。
职业教育人才培养计划成为产业发展保障
加快大数据专业人才培养、提升人才培养质量已成为教育亟须解决的难题。而职业教育则是突破解决这一难题的有效途径之一。党的第十八次全国代表大会上就提出了“大力发展职业教育,提高高等教育质量”的要求和重点培养具有实际动手能力的应用型、复合型人才的发展规划,后续出台的《国务院关于加快发展现代职业教育的决定》、《现代职业教育体系建设规划》(2012-2020)等纲领性文件更明确提出“加快发展现代职业教育,是深入实施科教兴国战略和人才强国战略的必然要求,是保就业、惠民生、打造经济升级版的重要举措,必须摆在更加突出的战略位置。”“鼓励各地探索职业教育体系建设的具体模式,鼓励职业教育多样化、多形式发展,形成政府办学、企业办学和社会办学共同发展,全日制与非全日制一体化,学历教育与非学历培训沟通衔接的职业教育新格局”。
由于大数据科学是与软件工程、计算机科学、数学和统计学等基础学科紧密结合,并与众多应用学科交叉融合的新兴学科,具有复合性、应用性和前沿性的特点,因此,目前国内主要是一些有实力的研究型大学在积极探索开展大数据专业人才的培养,尚未形成明晰的人才培养体系。而一些职业教育机构由于市场敏感度高、企业资源丰富等优势,开始实施大数据技术的相关培训时间较早,已经构建起符合市场需求的人才培养体系,值得学校借鉴。
校企联合培养大数据职业人才
2016年,湖南省职业教育新程集团与省内高校合作共建大数据与互联网职业人才培养计划。高校在大数据高端人才与研究方面具有极大的优势,而新程教育则是一家根植湖南,专注信息技术职业教育的集团公司,旗下产业覆盖职业教育、电子商务平台运营、创投孵化三大领域。公司研发有自有知识产权体系的职业教育教材,并于2007年被国家工信部认定为信息化工程师资格认证指定教材。2013年公司被评为腾讯网十年最具创新力IT教育品牌。在信息技术人才培养方面硕果累累。
通过大数据人才培养计划的建立,新程将协同其大学计划一起为高校提供基于分布式实验环境的硬件及软件系统套件,以及行业最新的专业级平台和工具等服务,使得学生能够掌握大数据领域的前沿技术。同时,新程还将与高校联合进行课程、教材等的深度研发,并持续提供多元化、高质量、更广泛的公开课程资料,覆盖当前主流嵌入式系统课程与实验、移动互联开发课程与实验、智能硬件实践课题及操作系统实训等。
另一方面,新程将十余年深耕信息产业职业人才培养所积累的广泛企业联盟引入高校,据悉,新程研发的职业素养提升体系(LDSP)将企业人才内训模式转化为大学教育模式,将用人企业的内训培养系统引入教学实施过程,通过共同制定培养方案、共同完成实训课程、共同建立学生成长档案,提前引入企业文化等模式,不断深化产教融合,塑造训练培养学生企业能力素质,适应企业对专业技能、职业素质、个人修养的用人需求,帮助学生走上职业发展之路。
未来的十年将是一个“大数据”引领的智慧科技的时代。我国需加快大数据专业建设步伐,注重人才与产业的结合,保证人才培养的质量与效率,加强校企合作。我们有理由相信,凭借高校在大数据研究方面深厚的底蕴,新程教育集团十余年深耕职业教育,积极开展大学合作计划,广泛建立校企合作产教融合联盟,必将有助于提升大数据职业人才培养发展速度,应对逐步升高的行业需求,加快优质教学资源的共享,推进教学改革,促进大数据职业教育发展。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08LSTM 输出不确定的成因、影响与应对策略 长短期记忆网络(LSTM)作为循环神经网络(RNN)的一种变体,凭借独特的门控机制,在 ...
2025-07-07统计学方法在市场调研数据中的深度应用 市场调研是企业洞察市场动态、了解消费者需求的重要途径,而统计学方法则是市场调研数 ...
2025-07-07CDA数据分析师证书考试全攻略 在数字化浪潮席卷全球的当下,数据已成为企业决策、行业发展的核心驱动力,数据分析师也因此成为 ...
2025-07-07