
大力培养大数据人才,引领智慧科技时代
在全球信息化快速发展的大背景下,数据已成为国家重要的基础性战略资源,大数据正日益渗透到社会生活和经济发展的方方面面。2015年,国务院出台《促进大数据发展行动纲要》,提出要全面推进我国大数据发展和应用,加快建设数据强国,在“十三五”规划、“两化融合”、“互联网+”和《中国制造2025》等重大国家战略中,明确要求在全社会各个领域中加大对大数据应用,促进大数据产业发展,加快“数据中国”建设,这标志着大数据产业已上升为战略高度。
大数据互联网产业升温催生人才紧缺
随着大数据产业在全球范围内的快速兴起,国内互联网行业和IT行业的领军企业纷纷进军大数据行业,大量大数据中心的建设,大数据法律法规的完善,数据挖掘、分析、存储和数据感知等技术的不断成熟以及数据安全的加强,使得大数据应用和推广更加广泛和易接受。大数据已经融入了制造业、医疗、金融等多个领域。人才职位主要集中在互联网、金融、房地产、消费品、制药/医疗等行业,源于该几类行业已在短期内无论是产品端、用户端、运营端等都实现了大数据的原始积累,且数据增长速度依然可观。
然而,由于人才培养的滞后,以及新兴行业熟练技术人员积累的不足,未来大数据人才的短缺必将成为制约行业发展的重要因素。目前市场对大数据人才需求的特点是:需求量大、薪资水平高,并且呈上升趋势。
职业教育人才培养计划成为产业发展保障
加快大数据专业人才培养、提升人才培养质量已成为教育亟须解决的难题。而职业教育则是突破解决这一难题的有效途径之一。党的第十八次全国代表大会上就提出了“大力发展职业教育,提高高等教育质量”的要求和重点培养具有实际动手能力的应用型、复合型人才的发展规划,后续出台的《国务院关于加快发展现代职业教育的决定》、《现代职业教育体系建设规划》(2012-2020)等纲领性文件更明确提出“加快发展现代职业教育,是深入实施科教兴国战略和人才强国战略的必然要求,是保就业、惠民生、打造经济升级版的重要举措,必须摆在更加突出的战略位置。”“鼓励各地探索职业教育体系建设的具体模式,鼓励职业教育多样化、多形式发展,形成政府办学、企业办学和社会办学共同发展,全日制与非全日制一体化,学历教育与非学历培训沟通衔接的职业教育新格局”。
由于大数据科学是与软件工程、计算机科学、数学和统计学等基础学科紧密结合,并与众多应用学科交叉融合的新兴学科,具有复合性、应用性和前沿性的特点,因此,目前国内主要是一些有实力的研究型大学在积极探索开展大数据专业人才的培养,尚未形成明晰的人才培养体系。而一些职业教育机构由于市场敏感度高、企业资源丰富等优势,开始实施大数据技术的相关培训时间较早,已经构建起符合市场需求的人才培养体系,值得学校借鉴。
校企联合培养大数据职业人才
2016年,湖南省职业教育新程集团与省内高校合作共建大数据与互联网职业人才培养计划。高校在大数据高端人才与研究方面具有极大的优势,而新程教育则是一家根植湖南,专注信息技术职业教育的集团公司,旗下产业覆盖职业教育、电子商务平台运营、创投孵化三大领域。公司研发有自有知识产权体系的职业教育教材,并于2007年被国家工信部认定为信息化工程师资格认证指定教材。2013年公司被评为腾讯网十年最具创新力IT教育品牌。在信息技术人才培养方面硕果累累。
通过大数据人才培养计划的建立,新程将协同其大学计划一起为高校提供基于分布式实验环境的硬件及软件系统套件,以及行业最新的专业级平台和工具等服务,使得学生能够掌握大数据领域的前沿技术。同时,新程还将与高校联合进行课程、教材等的深度研发,并持续提供多元化、高质量、更广泛的公开课程资料,覆盖当前主流嵌入式系统课程与实验、移动互联开发课程与实验、智能硬件实践课题及操作系统实训等。
另一方面,新程将十余年深耕信息产业职业人才培养所积累的广泛企业联盟引入高校,据悉,新程研发的职业素养提升体系(LDSP)将企业人才内训模式转化为大学教育模式,将用人企业的内训培养系统引入教学实施过程,通过共同制定培养方案、共同完成实训课程、共同建立学生成长档案,提前引入企业文化等模式,不断深化产教融合,塑造训练培养学生企业能力素质,适应企业对专业技能、职业素质、个人修养的用人需求,帮助学生走上职业发展之路。
未来的十年将是一个“大数据”引领的智慧科技的时代。我国需加快大数据专业建设步伐,注重人才与产业的结合,保证人才培养的质量与效率,加强校企合作。我们有理由相信,凭借高校在大数据研究方面深厚的底蕴,新程教育集团十余年深耕职业教育,积极开展大学合作计划,广泛建立校企合作产教融合联盟,必将有助于提升大数据职业人才培养发展速度,应对逐步升高的行业需求,加快优质教学资源的共享,推进教学改革,促进大数据职业教育发展。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10