企业建立大数据管理政策的五大贴
随着企业所收集的数据量的成倍增加,他们创建数据的速度也在加快。在数字宇宙中的数据量是相当惊人的,现如今,“gegobytes”和“brontobytes”即将取代百万兆字节,成为常见的数据存储测量单位。同时,各国政府机构都在编写和制定复杂的新规则,因此,企业对于相关数据的收集分析和使用必须遵循和符合这些原则的规定。美国证券交易委员会最新的SCI规定长达700多页。同时,工业集团也在继续编写强制性的新规则或更新现有的规则,如PCI-DSS。这些现状都使得企业的大数据管理变得非常困难,而在本文中,我们将为大家介绍五大战略步骤,以帮助企业开始建立其大数据管理政策。
设定数字化的治理目标
首先,企业必须明确数据信息的管理及其目标是不同的。如果不能有利于创造新的财富价值,那么,数据信息治理政策对于企业领导没有任何意义。毕竟,创造财富价值才是企业存在的意义。为了取得成功,数据信息治理建立和强制执行数字化信息的相关规则,以创造财富。新的财富是通过以两大隐藏的支出为目标而创建的,这两大隐藏的支出分别为发现日常业务中的数据的成本及验证数据的真实准确性的成本费用。
所有的管理规则,无论其是官方的监管规定、行业规则或商业协议,都需要实现一个共同的目标:创建可以依赖的真实准确的数据真相。当企业将这些方方面面联系起来,并看到大数据管理策略将如何帮助企业降低成本,进而创造出更大的净收入,同时实现合规性时,想要获得企业执行层面的支持是相对容易实现的。
从一开始就实施数字化治理策略
其次,信息管理必须涵盖在业务范围内的任何设计流程的前端。通过设计流程确保对数据隐私的充分保护已经成为一种流行的最佳实践方案,但这仅仅只包含了一种数据分类:个人身份信息。同样的原则也应适用于所有的业务流程,无论是改造现有的治理策略或设计全新的东西。在21世纪,每一道工序所生成的新数据都必须进行治理。在一开始就应该建立良好的大数据治理规则能够在后期带来巨大的成本节约,因为这样就没有人会问“我们要如何处理所有这些新数据?”的问题了。
另一个可能更有意义的是,当把数据信息移动到设计的前端,企业关注的焦点将集中于如何利用新的数据以创造出新的财富价值。许多新产生的数据是非常精细的,观测数据并不需要治理,包括按键监控、语音通话记录、应用程序事务和执行日志数据。但当我们问到数据如何能够帮助企业提高绩效时,可以有完全不同的设计结果。
衡量大数据治理的绩效
第三,创建衡量数字化治理绩效的指标。大数据管理所需要的不仅仅是有相关的管理政策和程序就行了,其还需要相关的合作伙伴企业和承包商能够正确的执行。甚至包括必须强制性的执行相关管理规则。这意味着当数据是不符合规定的时候,能够衡量性能,并进行快速的计算。
该衡量指标必须关注于人力资产和机器执行的性能表现,特别是在设备设计和软件应用程序运行过程中很可能 出现的合规性风险。在一个复杂系统中的未经报告的节点往往是一个更大的合规性问题的第一个指标,但如果没有相应的衡量指标的化,那么任何潜在的不良后果就很少有机会能够通过测量在早期被干预和限制了。
强制执行您企业的规则
第四,进行资源投资,并严格执行您企业的信息管理规则。在过去的两年里,许多重大的公共性黑客攻击事件和系统被黑事件均已经发现,企业的确是制定了相关的衡量数字化治理绩效的指标,以防止不良后果发生的。但问题就在于:没有专人被指派负责审查并做出快速反应。这便是必须以创造真实的财富价值为目标变得如此重要的原因所在了。很久以前,信息安全工作者们就已经认识到他们工作中最难的部分是调查和发现不良事件的根源。有了这方面的努力,相关的事故便是可以避免的,巨大的成本节约也是可能的。但是,解决方案必须有包括人为的详细审查,并在不良事件发生前,进行事务优先顺序的调查和排序。
实施强制性的数据信息治理规则并不需要让人力资源被分配到无休止的、繁琐的日志数据的审查中。相关的应用程序和服务可以分析信息安全相关的日志数据。企业市场竞争的秘密就在于适当的利用这些大多数公司都已经有的这些应用程序和服务,以服务于一个更大的议程,包括信息治理规则。事实上,数据信息治理与信息安全之间的维恩图(Venn diagram)重叠变得越来越多。这是因为有效的数据安全的实现需要由大数据治理策略提供:真实和安全的数据,可以被信任的认为是一家企业准确真实的记录和企业行为。
了解您的客户
出人意料的是,在几乎每一家企业,其公共部门都是其电子数据最大的消费者。实际上,任何一家企业的各个部门都需要这些数据,以便按照相关的法规进行管理,这些包括部门:就业实践,生产实践,会计实务,车队维修,库存质量控制等。但是,大多数大数据分析企业的高管团队并没有认识到,新的公共法规的目的是为了更好地保证企业信息系统的建立和维护相关的数据调查,保证执法应当如实记录。换言之,任何一家企业都需要由其被托管的数据来证明他们的业务记录的完整性。
这是一个根本性转变,具有重要的经济意义。从历史上看,企业总是在事后做出反应。企业现在被要求允许公共部门访问,有时需要是实时的,以提供持续的性能数据,作为遵守相关监管规定的证据。为了使数据可靠,企业对数据维护系统实施强加的要求。花费在电子发现和律师方面所找到记录的迅速消失,并被前端信息治理投资所取代,以确保数据满足公共部门的需求。而与所有其他领域的业务一样,顾客永远是对的。
本文中所介绍的这五大战略正在被世界各地的企业公司所广泛接受,以确保提升其竞争优势。他们不容易实现,但企业如果不这样做,则可能意味着需要花费更多的成本和费用,最终降低企业的价值。
数据分析咨询请扫描二维码
在当今以数据为导向的商业环境中,数据分析师的角色变得越来越重要。无论是揭示消费者行为的趋势,还是优化企业运营的效率,数据 ...
2024-11-17金融数学是一门充满挑战和机遇的专业,它将数学、统计学和金融学的知识有机结合,旨在培养能够运用数学和统计方法解决复杂金融市 ...
2024-11-16在信息时代的浪潮中,大数据已成为推动创新的重要力量。无论是在商业、医疗、金融,还是在日常生活中,大数据扮演的角色都愈发举 ...
2024-11-16随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15在快速演变的数字时代,数据分析已成为多个行业的核心驱动力。无论你是刚刚踏入数据分析领域,还是寻求进一步发展的专业人士,理 ...
2024-11-15Python作为一种通用编程语言,以其简单易学、功能强大等特点,成为众多领域的核心技术驱动者。无论是初学者还是有经验的编程人员 ...
2024-11-15在当今数据驱动的世界中,数据分析已成为许多行业的基础。无论是商业决策,产品开发,还是市场策略优化,数据分析都扮演着至关重 ...
2024-11-15数据分析作为现代商业和研究领域不可或缺的一部分,吸引了越来越多的初学者。然而,自学数据分析的过程中,初学者常常会遇到许多 ...
2024-11-15在当今的数据驱动世界中,机器学习方法在数据挖掘与分析中扮演着核心角色。这些方法通过从数据中学习模式和规律来构建模型,实现 ...
2024-11-15随着数据在各个行业的重要性日益增加,数据分析师在商业和技术领域的角色变得至关重要。其核心职责之一便是通过数据可视化,将复 ...
2024-11-15数据分析师的职责不仅仅局限于解析数据和得出结论,更在于将这些复杂的信息转换为清晰、易懂且具有影响力的沟通。良好的沟通能力 ...
2024-11-15数字化转型是企业提升竞争力和实现可持续发展的关键路径。面对快速变化的市场环境,以及技术的飞速发展,企业在数字化转型过程中 ...
2024-11-15CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14在当今高速发展的技术环境下,企业正在面临前所未有的机遇和挑战。数字化转型已成为企业保持竞争力和应对市场变化的必由之路。要 ...
2024-11-13