R语言之数据结构
R语言拥有许多用于存储数据的对象类型,包括标量、向量、矩阵、数组、数据框、列表、因子。
1.标量:标量是只包含一个元素的向量
1
2
3
|
> a <- 1; # 数值型
> b <- "China"; # 字符型
> c <- TRUE; # 逻辑型
|
2.向量:向量用于存储数值型、字符型或逻辑型数据的一维数组。通过c()函数来创建向量
1
2
3
|
> d <- c(1,2,3);
> e <- c("China","USA");
> f <- c(T,F,F,T);
|
3.矩阵(matrix):矩阵是一个二维数组,每个元素都拥有相同的模式(数值型、字符型、逻辑型),一般通过函数matrix()来创建矩阵
matrix(data = NA, nrow = 1, ncol = 1, byrow = FALSE, dimnames = NULL) data:包含了矩阵的元素; nrow 和 ncol:用于指定矩阵的行数和列数; byrow=F:默认创建的矩阵按照列进行排列; dimnames:创建矩阵时可以设置行和列的名称(必须为列表形式);
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
|
> m1 <- matrix(1:8,nrow=4)
#默认按列填充
> m1
[,1] [,2]
[1,] 1 5
[2,] 2 6
[3,] 3 7
[4,] 4 8
#设置byrow=T,将元素按照行进行填充
> m2 <- matrix(1:8,nrow=4,byrow=T)
> m2
[,1] [,2]
[1,] 1 2
[2,] 3 4
[3,] 5 6
[4,] 7 8
# 设置矩阵行和列的名称
> m3 <- matrix(1:8,nrow=4,byrow=T,dimnames=list(c("r1","r2","r3","r4"),c("c1","c2")))
> m3
c1 c2
r1 1 2
r2 3 4
r3 5 6
r4 7 8
|
4.数组(array):与矩阵类型,但是维度可以大于2,数组可以通过array()函数进行创建;数组中的数据也只能拥有一种模式(数据类型),如果数组中的数据有其他的数据类型,R会自动将所有数据转换为同一模式
array(data = NA, dim = length(data), dimnames = NULL) data:包含了数组中的数据; dim:是一个数值型的向量,给出了各个维度下标的最大值; dimnames:各个维度名称标签的列表;
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
|
> arr <- array(1:24,dim=c(4,3,2))
> arr
, , 1
[,1] [,2] [,3]
[1,] 1 5 9
[2,] 2 6 10
[3,] 3 7 11
[4,] 4 8 12
, , 2
[,1] [,2] [,3]
[1,] 13 17 21
[2,] 14 18 22
[3,] 15 19 23
[4,] 16 20 24
|
5.数据框(data.frame):数据框类似于二维表格,包含行和列,是R中最常处理的数据结构。不同的列可以包含不同的模式,每一列数据的模式必须唯一;数据框可以通过函数data.frame()进行创建data.frame(..., row.names = NULL, check.rows = FALSE, check.names = TRUE, stringsAsFactors = default.stringsAsFactors())row.names:设置数据框行的名称; check.rows:默认为FALSE,检查行的名称和数量是否一致; check.names:逻辑值,默认为TRUE,如果为TRUE,变量的名称不能够重复,如果重复,则R会自动进行转换以保证列名不同; stringsAsFactors :是否将字符串转换为因子(factor)类型,stringsAsFactors 默认为TRUE,即default.stringsAsFactors()的值为TRUE,将字符串转换为因子;
1
2
3
4
5
6
7
8
9
10
11
|
> g <- data.frame(a=c(1,2,3),a=c(4,5,6),row.names=c("n1","n2","n3"),check.names=T)
> g
a a.1
n1 1 4
n2 2 5
n3 3 6
> g["a.1"] #由于数据框g有重复列名a,因为设置了check.names=T,R内部会自动将第二列的列名a转换为a.1
a.1
n1 4
n2 5
n3 6
|
6.列表(list):是一个有序对象的集合,列表允许整合若干对象到单个对象名下,可以通过list()函数进行创建
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
|
> k <- list(d=5:9,e="China") # 创建列表k,包括d和e两个对象
> l <- list(title="mylist",a=1:3,b=matrix(1:8,nrow=2),c=c("one","two"),k) #创建列表l,l列表中包含了列表k(列表中也可以包含列表对象)
> l
$title
[1] "mylist"
$a
[1] 1 2 3
$b
[,1] [,2] [,3] [,4]
[1,] 1 3 5 7
[2,] 2 4 6 8
$c
[1] "one" "two"
[[5]]
[[5]]$d
[1] 5 6 7 8 9
[[5]]$e
[1] "China"
|
7.因子(factor):类别(名义型)变量和有序类别(有序型)变量在R中称为因子。因子型数据在计算机内部存储为整型数据,因子水平属性将每个整型数据映射到一个因子水平上。因为整型数据占的存储空间较少,因 此这种方式比字符串向量更节省存储空间。
factor(x = character(), levels, labels = levels, exclude = NA, ordered = is.ordered(x), nmax = NA) x:用于转换为因子的字符向量数据; levels:因子水平向量,因子型变量可以取得的所有值被称为因子水平; labels:字符型向量,labels与levels有相同的数量或者只有一个; excelude:生成水平时要去除的水平; ordered:默认为FALSE,设置为TRUE,表示有序型变量,用以确定levels 是否应该被视为有序的(按照给定的顺序); nmax: 设定水平数量的上限值
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
|
> x <- factor(x=c("middle","small","big","large"),levels=c("small","middle","big","large"),ordered=T)
> x
[1] middle small big large
Levels: small < middle < big < large # R在输出有序因子时会显示因子水平的顺序
> y <- factor(x=c("middle","small","big","large"),levels=c("small","middle","big","large"),ordered=T,labels=c(1,2,3,4))
> y
[1] 2 1 3 4
Levels: 1 < 2 < 3 < 4
> z <- factor(x=c("middle","small","big","large"),levels=c("small","middle","big","large"),exclude=c("small","middle"))
> z
[1] <NA> <NA> big large # 由于去除了水平small和middle,所以原始数据中水平为small和middle的值输出为NA
Levels: big large
> x.integer <- unclass(x) # 通过移除因子x的类属性创建整型向量x.integer 注意此时因子x本身并没有发生变化
> x.integer
[1] 2 1 3 4
attr(,"levels")
[1] "small" "middle" "big" "large"
> class(x.integer)
[1] "integer"
|
数据分析咨询请扫描二维码
在当今以数据为导向的商业环境中,数据分析师的角色变得越来越重要。无论是揭示消费者行为的趋势,还是优化企业运营的效率,数据 ...
2024-11-17金融数学是一门充满挑战和机遇的专业,它将数学、统计学和金融学的知识有机结合,旨在培养能够运用数学和统计方法解决复杂金融市 ...
2024-11-16在信息时代的浪潮中,大数据已成为推动创新的重要力量。无论是在商业、医疗、金融,还是在日常生活中,大数据扮演的角色都愈发举 ...
2024-11-16随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15在快速演变的数字时代,数据分析已成为多个行业的核心驱动力。无论你是刚刚踏入数据分析领域,还是寻求进一步发展的专业人士,理 ...
2024-11-15Python作为一种通用编程语言,以其简单易学、功能强大等特点,成为众多领域的核心技术驱动者。无论是初学者还是有经验的编程人员 ...
2024-11-15在当今数据驱动的世界中,数据分析已成为许多行业的基础。无论是商业决策,产品开发,还是市场策略优化,数据分析都扮演着至关重 ...
2024-11-15数据分析作为现代商业和研究领域不可或缺的一部分,吸引了越来越多的初学者。然而,自学数据分析的过程中,初学者常常会遇到许多 ...
2024-11-15在当今的数据驱动世界中,机器学习方法在数据挖掘与分析中扮演着核心角色。这些方法通过从数据中学习模式和规律来构建模型,实现 ...
2024-11-15随着数据在各个行业的重要性日益增加,数据分析师在商业和技术领域的角色变得至关重要。其核心职责之一便是通过数据可视化,将复 ...
2024-11-15数据分析师的职责不仅仅局限于解析数据和得出结论,更在于将这些复杂的信息转换为清晰、易懂且具有影响力的沟通。良好的沟通能力 ...
2024-11-15数字化转型是企业提升竞争力和实现可持续发展的关键路径。面对快速变化的市场环境,以及技术的飞速发展,企业在数字化转型过程中 ...
2024-11-15CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14在当今高速发展的技术环境下,企业正在面临前所未有的机遇和挑战。数字化转型已成为企业保持竞争力和应对市场变化的必由之路。要 ...
2024-11-13