1、线性回归
线性回归就是使用下面的预测函数预测未来观测量:
其中,x1,x2,...,xk都是预测变量(影响预测的因素),y是需要预测的目标变量(被预测变量)。
线性回归模型的数据来源于澳大利亚的CPI数据,选取的是2008年到2011年的季度数据。
rep函数里面的第一个参数是向量的起始时间,从2008-2010,第二个参数表示向量里面的每个元素都被4个小时间段。
year <- rep(2008:2010, each=4)
quarter <- rep(1:4, 3)
cpi <- c(162.2, 164.6, 166.5, 166.0,
166.2, 167.0, 168.6, 169.5,
171.0, 172.1, 173.3, 174.0)
plot函数中axat=“n”表示横坐标刻度的标注是没有的
plot(cpi, xaxt="n", ylab="CPI", xlab="")
绘制横坐标轴
axis(1, labels=paste(year,quarter,sep="Q"), at=1:12, las=3)
接下来,观察CPI与其他变量例如‘year(年份)’和‘quarter(季度)’之间的相关关系。
cor(year,cpi)
cor(quarter,cpi)
输出如下:
cor(quarter,cpi)
[1] 0.3738028
cor(year,cpi)
[1] 0.9096316
cor(quarter,cpi)
[1] 0.3738028
由上图可知,CPI与年度之间的关系是正相关,并且非常紧密,相关系数接近1;而它与季度之间的相关系数大约为0.37,只是有着微弱的正相关,关系并不明显。
然后使用lm()函数建立一个线性回归模型,其中年份和季度为预测因素,CPI为预测目标。
建立模型fit
fit <- lm(cpi ~ year + quarter)
fit
输出结果如下:
Call:
lm(formula = cpi ~ year + quarter)
Coefficients:
(Intercept) year quarter
-7644.488 3.888 1.167
由上面的输出结果可以建立以下模型公式计算CPI:
其中,c0、c1和c2都是模型fit的参数分别是-7644.488、3.888和1.167。因此2011年的CPI可以通过以下方式计算:
(cpi2011 <-fit$coefficients[[1]] + fit$coefficients[[2]]*2011 +
fit$coefficients[[3]]*(1:4))
输出的2011年的季度CPI数据分别是174.4417、175.6083、176.7750和177.9417。
模型的具体参数可以通过以下代码查看:
查看模型的属性
attributes(fit)
$names
[1] "coefficients" "residuals" "effects" "rank" "fitted.values"
[6] "assign" "qr" "df.residual" "xlevels" "call"
[11] "terms" "model"
$class
[1] "lm"
模型的参数
fit$coefficients
观测值与拟合的线性模型之间的误差,也称为残差
residuals(fit)
1 2 3 4 5 6 7
-0.57916667 0.65416667 1.38750000 -0.27916667 -0.46666667 -0.83333333 -0.40000000
8 9 10 11 12
-0.66666667 0.44583333 0.37916667 0.41250000 -0.05416667
除了将数据代入建立的预测模型公式中,还可以通过使用predict()预测未来的值。
输入预测时间
data2011 <- data.frame(year=2011, quarter=1:4)
cpi2011 <- predict(fit, newdata=data2011)
设置散点图上的观测值和预测值对应点的风格(颜色和形状)
style <- c(rep(1,12), rep(2,4))
plot(c(cpi, cpi2011), xaxt="n", ylab="CPI", xlab="", pch=style, col=style)
标签中sep参数设置年份与季度之间的间隔
axis(1, at=1:16, las=3,
labels=c(paste(year,quarter,sep="Q"), "2011Q1", "2011Q2", "2011Q3", "2011Q4"))
预测结果如下:
上图中红色的三角形就是预测值。
2、Logistic回归
Logistic回归是通过将数据拟合到一条线上并根据简历的曲线模型预测事件发生的概率。可以通过以下等式来建立一个Logistic回归模型:
其中,x1,x2,...,xk是预测因素,y是预测目标。令
,上面的等式被转换成:
使用函数glm()并设置响应变量(被解释变量)服从二项分布(family='binomial,'link='logit')建立Logistic回归模型,更多关于Logistic回归模型的内容可以通过以下链接查阅:
· R Data Analysis Examples - Logit Regression
· 《LogisticRegression (with R)》
3、广义线性模型
广义线性模型(generalizedlinear model, GLM)是简单最小二乘回归(OLS)的扩展,响应变量(即模型的因变量)可以是正整数或分类数据,其分布为某指数分布族。其次响应变量期望值的函数(连接函数)与预测变量之间的关系为线性关系。因此在进行GLM建模时,需要指定分布类型和连接函数。这个建立模型的分布参数包括binomaial(两项分布)、gaussian(正态分布)、gamma(伽马分布)、poisson(泊松分布)等。
广义线性模型可以通过glm()函数建立,使用的数据是包‘TH.data’自带的bodyfat数据集。
data("bodyfat", package="TH.data")
myFormula <- DEXfat ~ age + waistcirc + hipcirc + elbowbreadth + kneebreadth
设置响应变量服从正态分布,对应的连接函数服从对数分布
bodyfat.glm <- glm(myFormula, family = gaussian("log"), data = bodyfat)
预测类型为响应变量
pred <- predict(bodyfat.glm, type="response")
plot(bodyfat$DEXfat, pred, xlab="Observed Values", ylab="Predicted Values")
abline(a=0, b=1)
预测结果检验如下图所示:
由上图可知,模型虽然也有离群点,但是大部分的数据都是落在直线上或者附近的,也就说明模型建立的比较好,能较好的拟合数据。
4、非线性回归
如果说线性模型是拟合拟合一条最靠近数据点的直线,那么非线性模型就是通过数据拟合一条曲线。在R中可以使用函数nls()建立一个非线性回归模型,具体的使用方法可以通过输入'?nls()'查看该函数的文档。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“用户旅程分析”概念 用户旅程图又叫做用户体验地图,它是用于描述用户在与产品或服务互动的过程中所经历的各个阶段、触点和情 ...
2025-01-22在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-22在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31