使用Excel绘制t分布概率密度函数
关于t分布应用广泛,主要用于假设检验。关于使用Excel画出t分布的概率密度函数图表的问题,试答如下:
使用excel绘制t分布的概率密度函数,需要两列:1)自变量X,2)计算自变量X对应的t分布的概率密度函数。由于Excel中TDIST函数计算的是概率累积密度,不能计算概率密度值,所以借用伽马函数的自然对数。先从t分布的公式着手。
其中:ν 为自由度=n-1
Γ为伽马函数的的符号
t分布的平均数和标准正态分布一样均等于0
t分布的标准差=ν/(ν-2)
我们以随机变量t值为x轴(即视t为x),如何将自由度带入方程式求y值?因为t分布中涉及到GAMMALN()函数,而excel是提供GAMMALN()函数的,所以我们可以使用excel中的GAMMALN()函数来计算得到t分布的概率密度函数(参见【附录】)。经转换后其公式为:
t(X,df)=EXP(GAMMALN((df+1)/2))/(SQRT(PI()*df)*EXP(GAMMALN(df/2)))*(1+X^2/df)^(-1/2*(df+1))……………………………………公式(1)
由于对公式书写格式的顺序的理解不同,上述公式可能也会写成以下形式:
t(X,df)=EXP(GAMMALN((df+1)/2))*(1+X^2/df)^(-(df+1)/2)/SQRT(df*PI())/EXP(GAMMALN(df/2)) ……………………………………公式(2)
现以自由度(ν)=4为例,求t分布的图表,可由以下几步进行:
第1步 确定自变量取值范围
自由度=4时,t分布的方差为ν/(ν-2)=2,标准差= SQRT (2)=1.414
t分布的平均数和标准正态分布一样均等于0,同样与正态分布一样,几乎99%的t值会落在平均数`x±3个标准差之内,即落在区间(`x-3σ,`x+3σ)之间,所以横轴的取值范围在-4.2~4.2之间。
第2步 在Excel单元格中输入自变量
在A列中,在单元格A2中输入-4.2,在单元格A3中输入-4,递增0.2,选中单元格A2与A3,按住右下角的填充控制点一直拖到单元格A44是4.2为止,A列的这些数据就作为随机变量t的取值。如表-1所示:
表-1
第3步 在单元格B2中输入计算t分布的概率密度函数的公式
对于公式(1),由于自由度(ν)=4 ,则由df=4代入;自变量X就是单元格A2的值,所以按Excel相对引用的规则,X由A2代入即可,于是单元格B2内容是
=EXP(GAMMALN((4+1)/2))/(SQRT(PI()*4)*EXP(GAMMALN(4/2)))*(1+A2^2/4)^(-1/2*(4+1)),如表-2所示:
表-2
上述公式如按公式(1)的理解顺序,单元格B2内容可以写成:
=EXP(GAMMALN((4+1)/2))*(1+A2^2/4)^(-(4+1)/2)/SQRT(4*PI())/EXP(GAMMALN(4/2))
结果是一样的。
第4步 复制公式
按住单元格B2右下角的填充控制点,向下一直拖曳到B44,将B2的公式填充复制到B列的相应的单元格,如表-3所示:
表-3
第5步 由于相对引用的规则,A列的自变量会自动被公式相对引用计算,结果如表-4所示:
表-4
上述表-3是为了说明公式的复制,而特意在“工具”-“选项”-“视图”中将“公式”勾选,从而使公示内容全部显示出来。实际操作中,如表-4一样,公式的表达式不会显露,只有计算的结果会出现。至此已完成自由度为4的t分布概率密度函数表。
第6步 作t分布概率密度函数图
选择A1:B44,选“图表向导”-“标准类型’-“XY散点图”(平滑线),如图-1所示:
图-1
第7步 输入标题,调整字号、线型等格式,完成t分布概率密度函数图,如图-2所示:
图-2
如将上图的图表类型换成二维面积图,则如图-3-1(2003版)和图-3-2(2010版)所示:
图-3-1
图-3-2
在Excel 2003版中面积图数据系列格式的图案的内部填充格式没有透明的设置,也不能使用柱形图那样用预先制作的透明图片填充,此类效果可以在2007版与2010版中轻易实现。如为了在2003版中突出视觉效果,可以尝试使用三维面积图。如将上图的图表类型换成三维面积图,则如图-4-1(2003版)和图-4-2(2010版)所示:
图-4-1
图-4-2
为了方便调整不同的自由度参数值观察图形变化,在Excel数据表中可在第一行的某几个单元格如E1、F1、G1输入不同参数,然后在公式引用这几个参数时使用不同的方式:列数据为相对引用,而行数据为绝对引用,如E$1、F$1、G$1。而A列自变量值则使用:列数据为绝对引用,而行数据为相对引用,如$A2、$A3、$A4等。
数据表输入截图如图-5:
图-5
在公式输入后,选择单元格区间A1:D44,在同一图表作出三种不同自由度的平滑曲线的散点图,可见随着自由度的变大,t分布越向Y轴集中如图-6所示:
图-6
【附录:关于GAMMALN()函数和EXP()函数】
•函数 GAMMALN 的计算公式如下:
伽马函数Γ(x)是个定积分,无法直接绘图,可由GAMMALN()函数和EXP()函数,并利用对数恒等式:
间接求得,下面对以上内容使用Excel中的相关文字加以说明。
GAMMALN函数的作用: 返回伽玛函数Γ(x)的自然对数。
语法:
GAMMALN(x)
X 为需要计算函数 GAMMALN 的数值。
GAMMALN(x)=LN(Γ(x))
说明:
如果 x 为非数值型,函数 GAMMALN 返回错误值 #VALUE!。
如果 x ≤ 0,函数 GAMMAIN 返回错误值 #NUM!。
数字 e 的 GAMMALN(i) 次幂等于 (i-1)!,其中 i 为整数,常数 e 等于 2.71828182845904,是自然对数的底数。
GAMMALN(8)=8.525161
EXP(GAMMALN(8))=5040=(8-1)!=FACT(7)
FACT(N)为返回N-1的阶乘(N-1)!=1×2×3×4×…×(N-2)×(N-1)的函数(其中N为自然数)
关于EXP()函数: EXP()返回 e 的 n 次幂。常数 e 等于 2.71828182845904,是自然对数的底数。
语法
EXP(number)
Number 为底数 e 的指数。
说明
若要计算以其他常数为底的幂,请使用指数操作符 (^)。
EXP 函数是计算自然对数的 LN 函数的反函数。
EXP(1)=2.718282(e的近似值)
EXP(2)=7.389056
EXP(1)=20.08554
EXP(LN(3))=3
于是为求伽马函数Γ(x)首先要回忆一个最基本的恒等式:
即可得:
把该恒等式用于伽马函数的取得,可以由以下两步进行:
先用GAMMALN(x),取得自然对数;
再用EXP(GAMMALN(x)),取得伽马函数的值。
数据分析咨询请扫描二维码
在准备数据分析师面试时,掌握高频考题及其解答是应对面试的关键。为了帮助大家轻松上岸,以下是10个高频考题及其详细解析,外加 ...
2024-12-20互联网数据分析师是一个热门且综合性的职业,他们通过数据挖掘和分析,为企业的业务决策和运营优化提供强有力的支持。尤其在如今 ...
2024-12-20在现代商业环境中,数据分析师是不可或缺的角色。他们的工作不仅仅是对数据进行深入分析,更是协助企业从复杂的数据信息中提炼出 ...
2024-12-20随着大数据时代的到来,数据驱动的决策方式开始受到越来越多企业的青睐。近年来,数据分析在人力资源管理中正在扮演着至关重要的 ...
2024-12-20在数据分析的世界里,表面上的技术操作只是“入门票”,而真正的高手则需要打破一些“看不见的墙”。这些“隐形天花板”限制了数 ...
2024-12-19在数据分析领域,尽管行业前景广阔、岗位需求旺盛,但实际的工作难度却远超很多人的想象。很多新手初入数据分析岗位时,常常被各 ...
2024-12-19入门数据分析,许多人都会感到“难”,但这“难”究竟难在哪儿?对于新手而言,往往不是技术不行,而是思维方式、业务理解和实践 ...
2024-12-19在如今的行业动荡背景下,数据分析师的职业前景虽然面临一些挑战,但也充满了许多新的机会。随着技术的不断发展和多领域需求的提 ...
2024-12-19在信息爆炸的时代,数据分析师如同探险家,在浩瀚的数据海洋中寻觅有价值的宝藏。这不仅需要技术上的过硬实力,还需要一种艺术家 ...
2024-12-19在当今信息化社会,大数据已成为各行各业不可或缺的宝贵资源。大数据专业应运而生,旨在培养具备扎实理论基础和实践能力,能够应 ...
2024-12-19阿里P8、P9失业都找不到工作?是我们孤陋寡闻还是世界真的已经“癫”成这样了? 案例一:本硕都是 985,所学的专业也是当红专业 ...
2024-12-19CDA持证人Louis CDA持证人基本情况 我大学是在一个二线城市的一所普通二本院校读的,专业是旅游管理,非计算机非统计学。毕业之 ...
2024-12-18最近,知乎上有个很火的话题:“一个人为何会陷入社会底层”? 有人说,这个世界上只有一个分水岭,就是“羊水”;还有人说,一 ...
2024-12-18在这个数据驱动的时代,数据分析师的技能需求快速增长。掌握适当的编程语言不仅能增强分析能力,还能帮助分析师从海量数据中提取 ...
2024-12-17在当今信息爆炸的时代,数据分析已经成为许多行业中不可或缺的一部分。想要在这个领域脱颖而出,除了热情和毅力外,你还需要掌握 ...
2024-12-17数据分析,是一项通过科学方法处理数据以获取洞察并支持决策的艺术。无论是在商业环境中提升业绩,还是在科研领域推动创新,数据 ...
2024-12-17在数据分析领域,图表是我们表达数据故事的重要工具。它们不仅让数据变得更加直观,也帮助我们更好地理解数据中的趋势和模式。相 ...
2024-12-16在当今社会,我们身处着一个飞速发展、变化迅猛的时代。不同行业在科技进步、市场需求和政策支持的推动下蓬勃发展,呈现出令人瞩 ...
2024-12-16在现代商业世界中,数据分析师扮演着至关重要的角色。他们通过解析海量数据,为企业战略决策提供有力支持。要有效完成这项任务, ...
2024-12-16在当今数据爆炸的时代,数据分析师是组织中不可或缺的导航者。他们通过从大量数据中提取可操作的洞察力,帮助企业在竞争激烈的市 ...
2024-12-16