使用Excel绘制t分布概率密度函数
关于t分布应用广泛,主要用于假设检验。关于使用Excel画出t分布的概率密度函数图表的问题,试答如下:
使用excel绘制t分布的概率密度函数,需要两列:1)自变量X,2)计算自变量X对应的t分布的概率密度函数。由于Excel中TDIST函数计算的是概率累积密度,不能计算概率密度值,所以借用伽马函数的自然对数。先从t分布的公式着手。
其中:ν 为自由度=n-1
Γ为伽马函数的的符号
t分布的平均数和标准正态分布一样均等于0
t分布的标准差=ν/(ν-2)
我们以随机变量t值为x轴(即视t为x),如何将自由度带入方程式求y值?因为t分布中涉及到GAMMALN()函数,而excel是提供GAMMALN()函数的,所以我们可以使用excel中的GAMMALN()函数来计算得到t分布的概率密度函数(参见【附录】)。经转换后其公式为:
t(X,df)=EXP(GAMMALN((df+1)/2))/(SQRT(PI()*df)*EXP(GAMMALN(df/2)))*(1+X^2/df)^(-1/2*(df+1))……………………………………公式(1)
由于对公式书写格式的顺序的理解不同,上述公式可能也会写成以下形式:
t(X,df)=EXP(GAMMALN((df+1)/2))*(1+X^2/df)^(-(df+1)/2)/SQRT(df*PI())/EXP(GAMMALN(df/2)) ……………………………………公式(2)
现以自由度(ν)=4为例,求t分布的图表,可由以下几步进行:
第1步 确定自变量取值范围
自由度=4时,t分布的方差为ν/(ν-2)=2,标准差= SQRT (2)=1.414
t分布的平均数和标准正态分布一样均等于0,同样与正态分布一样,几乎99%的t值会落在平均数`x±3个标准差之内,即落在区间(`x-3σ,`x+3σ)之间,所以横轴的取值范围在-4.2~4.2之间。
第2步 在Excel单元格中输入自变量
在A列中,在单元格A2中输入-4.2,在单元格A3中输入-4,递增0.2,选中单元格A2与A3,按住右下角的填充控制点一直拖到单元格A44是4.2为止,A列的这些数据就作为随机变量t的取值。如表-1所示:
表-1
第3步 在单元格B2中输入计算t分布的概率密度函数的公式
对于公式(1),由于自由度(ν)=4 ,则由df=4代入;自变量X就是单元格A2的值,所以按Excel相对引用的规则,X由A2代入即可,于是单元格B2内容是
=EXP(GAMMALN((4+1)/2))/(SQRT(PI()*4)*EXP(GAMMALN(4/2)))*(1+A2^2/4)^(-1/2*(4+1)),如表-2所示:
表-2
上述公式如按公式(1)的理解顺序,单元格B2内容可以写成:
=EXP(GAMMALN((4+1)/2))*(1+A2^2/4)^(-(4+1)/2)/SQRT(4*PI())/EXP(GAMMALN(4/2))
结果是一样的。
第4步 复制公式
按住单元格B2右下角的填充控制点,向下一直拖曳到B44,将B2的公式填充复制到B列的相应的单元格,如表-3所示:
表-3
第5步 由于相对引用的规则,A列的自变量会自动被公式相对引用计算,结果如表-4所示:
表-4
上述表-3是为了说明公式的复制,而特意在“工具”-“选项”-“视图”中将“公式”勾选,从而使公示内容全部显示出来。实际操作中,如表-4一样,公式的表达式不会显露,只有计算的结果会出现。至此已完成自由度为4的t分布概率密度函数表。
第6步 作t分布概率密度函数图
选择A1:B44,选“图表向导”-“标准类型’-“XY散点图”(平滑线),如图-1所示:
图-1
第7步 输入标题,调整字号、线型等格式,完成t分布概率密度函数图,如图-2所示:
图-2
如将上图的图表类型换成二维面积图,则如图-3-1(2003版)和图-3-2(2010版)所示:
图-3-1
图-3-2
在Excel 2003版中面积图数据系列格式的图案的内部填充格式没有透明的设置,也不能使用柱形图那样用预先制作的透明图片填充,此类效果可以在2007版与2010版中轻易实现。如为了在2003版中突出视觉效果,可以尝试使用三维面积图。如将上图的图表类型换成三维面积图,则如图-4-1(2003版)和图-4-2(2010版)所示:
图-4-1
图-4-2
为了方便调整不同的自由度参数值观察图形变化,在Excel数据表中可在第一行的某几个单元格如E1、F1、G1输入不同参数,然后在公式引用这几个参数时使用不同的方式:列数据为相对引用,而行数据为绝对引用,如E$1、F$1、G$1。而A列自变量值则使用:列数据为绝对引用,而行数据为相对引用,如$A2、$A3、$A4等。
数据表输入截图如图-5:
图-5
在公式输入后,选择单元格区间A1:D44,在同一图表作出三种不同自由度的平滑曲线的散点图,可见随着自由度的变大,t分布越向Y轴集中如图-6所示:
图-6
【附录:关于GAMMALN()函数和EXP()函数】
•函数 GAMMALN 的计算公式如下:
伽马函数Γ(x)是个定积分,无法直接绘图,可由GAMMALN()函数和EXP()函数,并利用对数恒等式:
间接求得,下面对以上内容使用Excel中的相关文字加以说明。
GAMMALN函数的作用: 返回伽玛函数Γ(x)的自然对数。
语法:
GAMMALN(x)
X 为需要计算函数 GAMMALN 的数值。
GAMMALN(x)=LN(Γ(x))
说明:
如果 x 为非数值型,函数 GAMMALN 返回错误值 #VALUE!。
如果 x ≤ 0,函数 GAMMAIN 返回错误值 #NUM!。
数字 e 的 GAMMALN(i) 次幂等于 (i-1)!,其中 i 为整数,常数 e 等于 2.71828182845904,是自然对数的底数。
GAMMALN(8)=8.525161
EXP(GAMMALN(8))=5040=(8-1)!=FACT(7)
FACT(N)为返回N-1的阶乘(N-1)!=1×2×3×4×…×(N-2)×(N-1)的函数(其中N为自然数)
关于EXP()函数: EXP()返回 e 的 n 次幂。常数 e 等于 2.71828182845904,是自然对数的底数。
语法
EXP(number)
Number 为底数 e 的指数。
说明
若要计算以其他常数为底的幂,请使用指数操作符 (^)。
EXP 函数是计算自然对数的 LN 函数的反函数。
EXP(1)=2.718282(e的近似值)
EXP(2)=7.389056
EXP(1)=20.08554
EXP(LN(3))=3
于是为求伽马函数Γ(x)首先要回忆一个最基本的恒等式:
即可得:
把该恒等式用于伽马函数的取得,可以由以下两步进行:
先用GAMMALN(x),取得自然对数;
再用EXP(GAMMALN(x)),取得伽马函数的值。
数据分析咨询请扫描二维码
在当今以数据为导向的商业环境中,数据分析师的角色变得越来越重要。无论是揭示消费者行为的趋势,还是优化企业运营的效率,数据 ...
2024-11-17金融数学是一门充满挑战和机遇的专业,它将数学、统计学和金融学的知识有机结合,旨在培养能够运用数学和统计方法解决复杂金融市 ...
2024-11-16在信息时代的浪潮中,大数据已成为推动创新的重要力量。无论是在商业、医疗、金融,还是在日常生活中,大数据扮演的角色都愈发举 ...
2024-11-16随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15在快速演变的数字时代,数据分析已成为多个行业的核心驱动力。无论你是刚刚踏入数据分析领域,还是寻求进一步发展的专业人士,理 ...
2024-11-15Python作为一种通用编程语言,以其简单易学、功能强大等特点,成为众多领域的核心技术驱动者。无论是初学者还是有经验的编程人员 ...
2024-11-15在当今数据驱动的世界中,数据分析已成为许多行业的基础。无论是商业决策,产品开发,还是市场策略优化,数据分析都扮演着至关重 ...
2024-11-15数据分析作为现代商业和研究领域不可或缺的一部分,吸引了越来越多的初学者。然而,自学数据分析的过程中,初学者常常会遇到许多 ...
2024-11-15在当今的数据驱动世界中,机器学习方法在数据挖掘与分析中扮演着核心角色。这些方法通过从数据中学习模式和规律来构建模型,实现 ...
2024-11-15随着数据在各个行业的重要性日益增加,数据分析师在商业和技术领域的角色变得至关重要。其核心职责之一便是通过数据可视化,将复 ...
2024-11-15数据分析师的职责不仅仅局限于解析数据和得出结论,更在于将这些复杂的信息转换为清晰、易懂且具有影响力的沟通。良好的沟通能力 ...
2024-11-15数字化转型是企业提升竞争力和实现可持续发展的关键路径。面对快速变化的市场环境,以及技术的飞速发展,企业在数字化转型过程中 ...
2024-11-15CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14在当今高速发展的技术环境下,企业正在面临前所未有的机遇和挑战。数字化转型已成为企业保持竞争力和应对市场变化的必由之路。要 ...
2024-11-13